Characteristics of Gamma-ray loud blazars in the VLBA Imaging and Polarimetry Survey

Astrophysical Journal Letters 726:1 (2011)

Authors:

JD Linford, GB Taylor, RW Romani, SE Healey, JF Helmboldt, ACS Readhead, R Reeves, JL Richards, G Cotter

Abstract:

The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong γ-ray emission. At lower flux levels, radio flux density does not directly correlate with γ-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the γ-ray loud and quiet FSRQs can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the γ-ray loud FSRQs are fundamentally different from the γ-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for γ-ray loud AGNs. © 2011. The American Astronomical Society. All rights reserved. Printedin the U.S.A.

Characteristics of Gamma-ray loud blazars in the VLBA Imaging and Polarimetry Survey

Astrophysical Journal 726:1 (2011)

Authors:

JD Linford, GB Taylor, RW Romani, SE Healey, JF Helmboldt, ACS Readhead, R Reeves, JL Richards, G Cotter

Abstract:

The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong γ-ray emission. At lower flux levels, radio flux density does not directly correlate with γ-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the γ-ray loud and quiet FSRQs can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the γ-ray loud FSRQs are fundamentally different from the γ-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for γ-ray loud AGNs. © 2011. The American Astronomical Society. All rights reserved. Printedin the U.S.A.

Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy

Experimental Astronomy 32:3 (2011) 193-316

Authors:

M Actis, G Agnetta, F Aharonian, A Akhperjanian, J Aleksić, E Aliu, D Allan, I Allekotte, F Antico, LA Antonelli, P Antoranz, A Aravantinos, T Arlen, H Arnaldi, S Artmann, K Asano, H Asorey, J Bähr, A Bais, C Baixeras, S Bajtlik, D Balis, A Bamba, C Barbier, M Barceló, A Barnacka, J Barnstedt, UB de Almeida, JA Barrio, S Basso, D Bastieri, C Bauer, J Becerra, Y Becherini, K Bechtol, J Becker, V Beckmann, W Bednarek, B Behera, M Beilicke, M Belluso, M Benallou, W Benbow, J Berdugo, K Berger, T Bernardino, K Bernlöhr, A Biland, S Billotta, T Bird, E Birsin, E Bissaldi, S Blake, O Blanch, AA Bobkov, L Bogacz, M Bogdan, C Boisson, J Boix, J Bolmont, G Bonanno, A Bonardi, T Bonev, J Borkowski, O Botner, A Bottani, M Bourgeat, C Boutonnet, A Bouvier, S Brau-Nogué, I Braun, T Bretz, MS Briggs, P Brun, L Brunetti, JH Buckley, V Bugaev, R Bühler, T Bulik, G Busetto, S Buson, K Byrum, M Cailles, R Cameron, R Canestrari, S Cantu, E Carmona, A Carosi, J Carr, PH Carton, M Casiraghi, H Castarede, O Catalano, S Cavazzani, S Cazaux, B Cerruti, M Cerruti, PM Chadwick, J Chiang, M Chikawa

Abstract:

Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. © 2011 The Author(s).

Living in a loft

Proceedings of Science 122 (2011)

Authors:

M Feroci, L Stella, M van der Klis, TJL Courvoisier, M Hernanz, R Hudec, A Santangelo, D Walton, A Zdziarski, D Barret, T Belloni, J Braga, S Brandt, C Budtz-Jørgensen, S Campana, JW den Herder, J Huovelin, GL Israel, M Pohl, P Ray, A Vacchi, S Zane, A Argan, P Attinà, G Bertuccio, E Bozzo, R Campana, D Chakrabarty, E Costa, A De Rosa, E Del Monte, S Di Cosimo, I Donnarumma, Y Evangelista, D Haas, P Jonker, S Korpela, C Labanti, P Malcovati, R Mignani, F Muleri, M Rapisarda, AR Rashevski, N Rea, A Rubini, C Tenzer, C Wilson-Hodge, B Winter, K Wood, G Zampa, N Zampa, MA Abramowicz, MA Alpar, D Altamirano, JM Alvarez, L Amati, C Amoros, LA Antonelli, R Artigue, P Azzarello, M Bachetti, G Baldazzi, M Barbera, C Barbieri, S Basa, A Baykal, R Belmont, L Boirin, V Bonvicini, L Burderi, M Bursa, C Cabanac, E Cackett, GA Caliandro, P Casella, S Chaty, J Chenevez, MJ Coe, A Collura, A Corongiu, S Covino, G Cusumano, F D’Amico, S Dall’Osso, D De Martino, G De Paris, G Di Persio, T Di Salvo, C Done, M Dovčiak, A Drago, U Ertan, S Fabiani, M Falanga, R Fender, P Ferrando, D Della Monica Ferreira, G Fraser, F Frontera, F Fuschino

Abstract:

LOFT (Large area Observatory For x-ray Timing) is an innovative mission concept for the next generation of X-ray experiments, submitted to the ESA Call for Medium size missions “M3”. Recent developments in the field of Silicon detectors allowed us to design a realistic observatory devoted to X-ray timing studies with an effective area above 10 m2, operating in the energy range 2-30 keV with an energy resolution of ∼250 eV. Such an exceedingly large area (20 times that of RXTE/PCA), with a time resolution better than 10 µs, will enable unprecedently fast and accurate time variability studies related to accreting collapsed objects (e.g. fast coherent pulsations and QPOs). The scientific payload is complemented by a coded-mask wide field monitor based on similar detectors. In this paper we present the mission concept, the payload design and the expected performances.

On the nature of the 'radio-quiet' black hole binaries

Monthly Notices of the Royal Astronomical Society 413:3 (2011) 2269-2280

Authors:

P Soleri, R Fender

Abstract:

The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially thought to be universal. However, recently, many black hole binaries have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the earlier correlations. This shows that black holes with similar accretion flows can produce a broad range of outflows in power, suggesting that some other parameters or factors might be tuning the accretion-ejection coupling. Recent work has already shown that this jet power does not correlate with the reported black hole spin measurements. Here we discuss whether fixed parameters of the binary system (orbital period, disc size, inclination), as well as the properties of the outburst, produce any effect on the energy output in the jet. No obvious dependence is found. We also show that there is no systematic variation in the slope of the radio-X-ray correlation with normalization. We define a jet-toy model in which the bulk Lorentz factor becomes larger than ̃1 above ̃0.1 per cent of the Eddington luminosity. With this model, if we assume random inclination angles which result in highly variable boosting at large Eddington ratios, we are able to reproduce qualitatively the scatter of the X-ray-radio correlation and the 'radio-quiet' population. However, the model seems to be at odds with some other observed properties of the systems. We also compare the 'radio-quiet' black holes with the neutron stars. We show that if a mass correction from the Fundamental Plane is applied, the possibility that they are statistically indistinguishable in the X-ray-radio plane cannot be completely ruled out. This result suggests that some of the outliers could actually be neutron stars or that the disc-jet coupling in the 'radio-quiet' black holes is more similar to the one in neutron stars. © 2011 The Authors. Monthly Notices of the Royal Astronomical Society © 2011 RAS.