Powerful jets from accreting black holes: evidence from the optical and infrared

(2010)

Authors:

DM Russell, RP Fender

A global spectral study of black hole X-ray binaries

Monthly Notices of the Royal Astronomical Society 403:1 (2010) 61-82

Authors:

RJH Dunn, RP Fender, EG Körding, T Belloni, C Cabanac

Abstract:

We report on a consistent and comprehensive spectral analysis of the X-ray emission of 25 black hole X-ray binaries. All publicly available observations of the black hole binaries in the RXTE archive were analysed. Three different types of model were fitted to investigate the spectral changes occurring during an outburst. For the population, as well as for each binary and each outburst from each binary, we construct two diagnostic diagrams. The hardness intensity/luminosity diagram (HID/HLD), the X-ray colour against the flux/luminosity of the binary, is most useful when studying a single binary. However, to compare different binary systems, the disc fraction luminosity diagram (DFLD) is more useful. The DFLD uses the luminosities of the disc and power-law components to calculate the ratio of the disc luminosity to the total luminosity, resulting in a more physical value, which is analogous to the X-ray colour calculated for X-ray binaries. The tracks of the outbursts populate the DFLD more evenly than the HLD. We discuss the limitations of both diagnostic diagrams for the study of the X-ray binary outbursts and clearly illustrate how the two diagrams map on to each other for real outburst data. The similarity of the X-ray colour and disc fraction behaviour over time during an outburst originally seen in GX 339-4 data is seen in other sources' outbursts. We extract the peak luminosities in a single outburst, as well as the luminosities at the transitions away from and returning to the power-law-dominated state for each outburst. The distribution of the luminosities at the transition from the power-law to the disc-dominated state peaks at around 0.3LEdd, the same as the peak of the distribution of the peak luminosities in an outburst. Using the disc fraction to calculate the transition luminosities shows that the distributions of the luminosities for the transitions away from and returning to the power-law-dominated state are both broad and appear to overlap. Using the change in disc fraction to calculate the date when a transition occurred is not drastically different from obtaining the dates from changes in the timing behaviour of the X-ray binary. In addition, we calculate the rate of motion of an X-ray binary through the DFLD during an outburst, a diagnostic which has the potential to be used as a comparison with populations of active galactic nuclei. The fastest rate of motion is on the egress and ingress from the power-law-dominated state. A further region of increased speed through the diagram occurs in the disc-dominated state on the return to the power-law-dominated state. Finally, we compare the measured X-ray luminosities with a small number of contemporaneous radio measurements. Overall, this is the most comprehensive and uniform global study of black hole X-ray binaries to date. © 2010 The Authors. Journal compilation © 2010 RAS.

A long-term optical-X-ray correlation in 4U 1957+11

Monthly Notices of the Royal Astronomical Society 402:4 (2010) 2671-2681

Authors:

DM Russell, F Lewis, P Roche, JS Clark, E Breedt, RP Fender

Abstract:

Three years of optical monitoring of the low-mass X-ray binary (LMXB) 4U 1957+11 is presented. The source was observed in V, R and i bands using the Faulkes Telescopes North and South. The light curve is dominated by long-term variations which are correlated (at the >3σ level) with the soft X-ray flux from the All Sky Monitor on board the Rossi X-ray Timing Explorer. The variations span 1 mag in all three filters. We find no evidence for periodicities in our light curves, contrary to a previous short-time-scale optical study in which the flux varied on a 9.3-h sinusoidal period by a smaller amplitude. The optical spectral energy distribution is blue and typical of LMXBs in outburst, as is the power-law index of the correlation β= 0.5, where Fν,OPT∝FβX. The discrete cross-correlation function reveals a peak at an X-ray lag of 2-14 days, which could be the viscous time-scale. However, adopting the least-squares method we find the strongest correlation at a lag of 0 ± 4 d, consistent with X-ray reprocessing on the surface of the disc. We therefore constrain the optical lag behind X-ray to be between -14 and +4 d. In addition, we use the optical-X-ray luminosity diagram for LMXBs as a diagnostic tool to constrain the nature of the compact object in 4U 1957+11, since black hole and neutron star sources reside in different regions of this diagram. It is found that if the system contains a black hole (as is the currently favoured hypothesis), its distance must exceed ∼20 kpc for the optical and X-ray luminosities to be consistent with other soft-state black hole systems. For distances <20 kpc, the data lie in a region of the diagram populated only by neutron star sources (black hole systems are 10 times optically brighter for this X-ray luminosity). 4U 1957+11 is unique: it is either the only black hole LMXB to exist in an apparent persistent soft state or a neutron star LMXB which behaves like a black hole. © 2010 The Authors. Journal compilation © 2010 RAS.

An outburst of SS 433 observed on milliarcsecond scale

Proceedings of Science 125 (2010)

Authors:

V Tudose, Z Paragi, R Fender, M Garrett, J Miller-Jones, S Trushkin, A Rushton, R Spencer, G Heald, P Soleri

Abstract:

SS 433 is a high-mass X-ray binary system (XRB) and one of the most persistent sources of relativistic jets in the Milky Way. The object has been intensively studied in radio at arcsecond scales, however the high-resolution observations (i.e. VLBI) are relatively scarce. In 2008 November the system was in outburst. Using the e-VLBI capabilities of the European VLBI Network (EVN) we observed SS 433 for three epochs during the active phase. The data offered a detailed view of the system’s behaviour in outburst at milliarcsecond scales. We used the “kinematic model” (which predicts the position along the jet of any knot ejected at some particular time in the past) to investigate the dynamic parameters of SS 433 and we examined the polarization properties of the ejected material. We report here the preliminary results.

EVN e-VLBI observations of galactic transients

Proceedings of Science 112 (2010)

Authors:

V Tudose, R Fender, Z Paragi, M Garrett, A Rushton, R Spencer, J Miller-Jones

Abstract:

E-VLBI (electronic very long baseline interferometry) is a new implementation of the VLBI technique consisting in transferring the data from the radio telescopes to the correlator over the internet and correlating them in real-time. Time-wise this is a major improvement over the traditional method. e-VLBI is thus offering new opportunities for radio transient studies. Its capability of rapid response enables a more efficient decision making process with respect to potential followup observations. The rapid feedback time also permits to quickly modify the observing strategy to best track the development of the transient phenomena. The results summarized here have been obtained with the EVN (European VLBI Network) in the past few years within a transient ToO programme. The targets were XRBs (X-ray binaries) undergoing periods of enhanced activity (outbursts). The EVN observations were performed at 5 GHz and were often complemented by quasi-simultaneous (within one day) data at other wavelengths (X-ray and optical). The findings reveal a complex behaviour of the accretion/ejection phenomena in the systems investigated and offer insights into the extreme physics close to a compact object.