No evidence for black hole spin powering of jets in X-ray binaries

Monthly Notices of the Royal Astronomical Society 406:3 (2010) 1425-1434

Authors:

RP Fender, E Gallo, D Russell

Abstract:

In this paper, we consider the reported measurements of black hole spin for black hole X-ray binaries and compare them against the measurements of jet power and speed across all accretion states in these systems. We find no evidence for any correlation between the properties of the jets and the reported spin measurements. These constraints are strongest in the hard X-ray state, which is associated with a continuous powerful jet. We are led to conclude that one or more of the following is correct: (i) the calculated jet power and speed measurements are wrong, (ii) the reported spin measurements are wrong and (iii) there is no strong dependence of the jet properties on the black hole spin. In addition to this lack of observational evidence for a relation between the black hole spin and jet properties in stellar mass black holes, we highlight the fact that there appear to be at least three different ways in which the jet power and/or radiative efficiency from a black hole X-ray binary may vary, two of which are certainly independent of spin because they occur in the same source on relatively short time-scales and the third which does not correlate with any reported measurements of black hole spin. We briefly discuss how these findings may impact upon interpretations of populations of active galactic nuclei in the context of black hole spin and merger history. © 2010 The Authors. Journal compilation © 2010 RAS.

Powerful jets from accreting black holes: Evidence from the optical and infrared

Chapter in Black Holes and Galaxy Formation, (2010) 295-320

Authors:

DM Russell, RP Fender

Abstract:

A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.

Probing the behaviour of the X-ray binary Cygnus X-3 with very long baseline radio interferometry

Monthly Notices of the Royal Astronomical Society 401:2 (2010) 890-900

Authors:

V Tudose, JCA Miller-Jones, RP Fender, Z Paragi, C Sakari, A Szostek, MA Garrett, V Dhawan, A Rushton, RE Spencer, M Van Der Klis

Abstract:

In order to test the recently proposed classification of the radio/X-ray states of the X-ray binary Cygnus X-3 (Cyg X-3), we present an analysis of the radio data available for the system at much higher spatial resolutions than used for defining the states. The radio data set consists of archival Very Long Baseline Array data at 5 or 15 GHz and new electronic European Very Long Baseline Interferometry Network data at 5 GHz. We also present 5-GHz Multi-Element Radio Linked Interferometer Network observations of an outburst of Cyg X-3. In the X-ray regime, we use quasi-simultaneous with radio, monitoring and pointed Rossi X-ray Timing Explorer observations. We find that when the radio emission from both jet and core is globally considered, the behaviour of Cyg X-3 at mas scales is consistent with that described at arcsec-scales. However, when the radio emission is disentangled in a core component and a jet component, the situation changes. It becomes clear that in active states the radio emission from the jet is dominating that from the core. This shows that in these states the overall radio flux cannot be used as a direct tracer of the accretion state. © 2009 RAS.

The complete spectrum of the neutron star X-ray binary 4U 0614+091

Astrophysical Journal 710:1 (2010) 117-124

Authors:

S Migliari, JA Tomsick, JCA Miller-Jones, S Heinz, RI Hynes, RP Fender, E Gallo, PG Jonker, TJ MacCarone

Abstract:

We observed the neutron star (NS) ultra-compact X-ray binary 4U 0614+091 quasi-simultaneously in the radio band (Very Large Array), mid-infrared (IR)/IR (Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera), near-IR/optical (Small and Moderate Aperture Research Telescope System), optical-UV (Swift/UV-Optical Telescope), soft and hard X-rays (Swift/X-ray Telescope and Rossi-X-ray Timing Explorer). The source was steadily in its "hard state." We detected the source in the whole range, for the first time in the radio band at 4.86 and 8.46GHz and in the mid-IR at 24 μm, up to 100 keV. The optically thick synchrotron spectrum of the jet is consistent with being flat from the radio to the mid-IR band. The flat jet spectrum breaks in the range ∼(1-4) × 1013Hz to an optically thin power-law synchrotron spectrum with spectral index ∼-0.5. These observations allow us to estimate a lower limit on the jet radiative power of 3 × 10 32 erg s-1 and a total jet power L J ∼ 1034μ-10.05 E 0.53c erg s-1 (where E c is the high-energy cutoff of the synchrotron spectrum in eV and μ0.05 is the radiative efficiency in units of 0.05). The contemporaneous detection of the optically thin part of the compact jet and the X-ray tail above 30keV allows us to assess the contribution of the jet to the hard X-ray tail by synchrotron self-Compton (SSC) processes. We conclude that, for realistic jet size, boosting, viewing angle, and energy partition, the SSC emission alone, from the post-shock, accelerated, non-thermal population in the jet, is not a viable mechanism to explain the observed hard X-ray tail of the NS 4U 0614+091. © 2010. The American Astronomical Society. All rights reserved.

The extraordinary radio galaxy MRC B1221-423: Probing deeper at radio and optical wavelengths

Monthly Notices of the Royal Astronomical Society 407:2 (2010) 721-733

Authors:

HM Johnston, JW Broderick, G Cotter, R Morganti, RW Hunstead

Abstract:

We present optical spectra and high-resolution multiwavelength radio observations of the compact steep-spectrum radio source MRC B1221-423 (z = 0.1706). MRC B1221-423 is a very young (∼105 yr), powerful radio source which is undergoing a tidal interaction with a companion galaxy. We find strong evidence of interaction between the active galactic nucleus (AGN) and its environment. The radio morphology is highly distorted, showing a dramatic interaction between the radio jet and the host galaxy, with the jet being turned almost back on itself. H i observations show strong absorption against the nucleus at an infall velocity of ∼250 km s-1 compared to the stellar velocity, as well as a second, broader component which may represent gas falling into the nucleus. Optical spectra show that star formation is taking place across the whole system. Broad optical emission lines in the nucleus show evidence of outflow. Our observations confirm that MRC B1221-423 is a young radio source in a gas-rich nuclear environment, and that there was a time delay of a few times 100 Myr between the onset of star formation and the triggering of the AGN. © 2010 The Authors. Journal compilation © 2010 RAS.