Internal shocks model for microquasar jets

International Conference Recent Advances in Natural Language Processing, RANLP (2008)

Authors:

O Jamil, R Fender, C Kaiser

Abstract:

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size). © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Measuring the accretion rate and kinetic luminosity functions of supermassive black holes

Monthly Notices of the Royal Astronomical Society 383:1 (2008) 277-288

Authors:

EG Körding, S Jester, R Fender

Abstract:

We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution. © 2007 The Authors.

Multifrequency integrated profiles of pulsars

Monthly Notices of the Royal Astronomical Society 388:1 (2008) 261-274

Authors:

S Johnston, A Karastergiou, D Mitra, Y Gupta

Abstract:

We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere. © 2008 The Authors. Journal compilation © 2008 RAS.

New pulsar rotation measures and the Galactic magnetic field

Monthly Notices of the Royal Astronomical Society 386:4 (2008) 1881-1896

Authors:

A Noutsos, S Johnston, M Kramer, A Karastergiou

Abstract:

We measured a sample of 150 pulsar rotation measures (RMs) using the 20-cm receiver of the Parkes 64-m radio telescope. 46 of the pulsars in our sample have not had their RM values previously published, whereas 104 pulsar RMs have been revised. We used a novel quadratic fitting algorithm to obtain an accurate RM from the calibrated polarization profiles recorded across 256 MHz of receiver bandwidth. The new data are used in conjunction with previously known dispersion measures and the NE2001 electron-density model to study models of the direction and magnitude of the Galactic magnetic field. © 2008 RAS.

Polarized infrared emission from X-ray binary jets

Monthly Notices of the Royal Astronomical Society 387:2 (2008) 713-723

Authors:

DM Russell, RP Fender

Abstract:

Near-infrared (NIR) and optical polarimetric observations of a selection of X-ray binaries are presented. The targets were observed using the Very Large Telescope and the United Kingdom Infrared Telescope. We detect a significant level (3σ) of linear polarization in four sources. The polarization is found to be intrinsic (at the >3σ level) in two sources; GRO J1655-40 (∼4-7 per cent in the H and Ks bands during an outburst) and Sco X-1 (∼0.1-0.9 per cent in the H and K bands), which is stronger at lower frequencies. This is likely to be the signature of optically thin synchrotron emission from the collimated jets in these systems, whose presence indicates that a partially ordered magnetic field is present at the inner regions of the jets. In Sco X-1, the intrinsic polarization is variable (and sometimes absent) in the H and K bands. In the J band (i.e. at higher frequencies), the polarization is not significantly variable and is consistent with an interstellar origin. The optical light from GX 339-4 is also polarized, but at a level and position angle consistent with scattering by interstellar dust. The other polarized source is SS 433, which has a low level (0.5-0.8 per cent) of J-band polarization, likely due to local scattering. The NIR counterparts of GRO J0422+32, XTE J1118+480, 4U 0614+09 and Aql X-1 (which were all in or near quiescence) have a linear polarization level of <16 per cent (3σ upper limit, some are <6 per cent). We discuss how such observations may be used to constrain the ordering of the magnetic field close to the base of the jet in such systems. © 2008 The Authors.