The Giant Radio Array for Neutrino Detection (GRAND) Project

ArXiv 2108.00032 (2021)

Abstract:

The GRAND project aims to detect ultra-high-energy neutrinos, cosmic rays and gamma rays, with an array of $200,000$ radio antennas over $200,000\,{\rm km}^2$, split into $\sim 20$ sub-arrays of $\sim 10,000\,{\rm km}^2$ deployed worldwide. The strategy of GRAND is to detect air showers above $10^{17}\,$eV that are induced by the interaction of ultra-high-energy particles in the atmosphere or in the Earth crust, through its associated coherent radio-emission in the $50-200\,$MHz range. In its final configuration, GRAND plans to reach a neutrino-sensitivity of $\sim 10^{-10}\,{\rm GeV}\,{\rm cm}^{-2}\,{\rm s}^{-1}\,{\rm sr}^{-1}$ above $5\times 10^{17}\,$eV combined with a sub-degree angular resolution. GRANDProto300, the 300-antenna pathfinder array, is planned to start data-taking in 2021. It aims at demonstrating autonomous radio detection of inclined air-showers, and study cosmic rays around the transition between Galactic and extra-Galactic sources. We present preliminary designs and simulation results, plans for the ongoing, staged approach to construction, and the rich research program made possible by the proposed sensitivity and angular resolution.

Multimessenger constraints on intergalactic magnetic fields from flaring objects

Proceedings of Science Sissa Medialab 395 (2021) 994

Authors:

A Saveliev, R Alves Batista

Abstract:

The origin of magnetic fields in the Universe is an open problem. Seed magnetic fields possibly produced in early times may have survived up to the present day close to their original form, providing an untapped window to the primeval Universe. The recent observations of high-energy neutrinos from the blazar TXS 0506+056 in association with an electromagnetic counterpart in a broad range of wavelengths can be used to probe intrinsic properties of this object and the traversed medium. Here we show that intergalactic magnetic fields (IGMFs) can affect the intrinsic spectral properties of this object reconstructed from observations. In particular, we point out that the reconstructed maximum gamma-ray energy of TXS 0506+056 can be significantly higher if IGMFs are strong. Finally, we use this flare to constrain both the magnetic-field strength and the coherence length of IGMFs.

CRPropa 3.2: a framework for high-energy astroparticle propagation

Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021) International Union of Pure and Applied Physics (2021)

Authors:

Rafael Alves Batista, Julia Becker Tjus, Julien Dörner, Andrej Dundovic, Björn Eichmann, Antonius Frie, Christopher Heiter, Mario R Hoerbe, Karl-Heinz Kampert, Lukas Merten, Gero Müller, Patrick Reichherzer, Andrey Saveliev, Leander Schlegel, Günter Sigl, Arjen van Vliet, Tobias Winchen

Abstract:

The landscape of high- and ultra-high-energy astrophysics has changed in the last decade, in large part owing to the inflow of high-quality data collected by present cosmic-ray, gamma-ray, and neutrino observatories. At the dawn of the multimessenger era, the interpretation of these observations within a consistent framework is important to elucidate the open questions in this field. CRPropa 3.2 is a Monte Carlo code for simulating the propagation of high-energy particles in the Universe. This new version represents a step further towards a more complete simulation framework for multimessenger studies. Some of the new developments include: cosmic-ray acceleration, support for particle interactions within astrophysical sources, full Monte Carlo treatment of electromagnetic cascades, improved ensemble-averaged Galactic propagation, and a number of technical enhancements. Here we present some of these novel features and some applications to gamma- and cosmic-ray propagation.

Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

Sissa Medialab Srl (2021) 881

Authors:

Eli Kunwiji Kasai, P Goldoni, M Backes, G Cotter, S Pita, C Boisson, D A. Williams, F D'Ammando, E Lindfors, U Barres de Almeida, W Max-Moerbeck, V Navarro-Aranguiz, J Becerra-Gonzalez, O Hervet, J-P Lenain, H Sol, SJ Wagner

Application of Pattern Spectra and Convolutional Neural Networks to the Analysis of Simulated Cherenkov Telescope Array Data

Sissa Medialab Srl (2021) 697

Authors:

Jann Aschersleben, Reynier Peletier, Manuela Vecchi, Michael Wilkinson