The Galactic center chimneys: the base of the multiphase outflow of the Milky Way

Astronomy and Astrophysics European Southern Observatory 646 (2021) A66

Authors:

G Ponti, Mr Morris, E Churazov, I Heywood, Robert Fender

Abstract:

Context. Outflows and feedback are key ingredients of galaxy evolution. Evidence for an outflow arising from the Galactic center (GC) – the so-called GC chimneys – has recently been discovered at radio, infrared, and X-ray bands.
Aims. We undertake a detailed examination of the spatial relationships between the emission in the different bands in order to place constraints on the nature and history of the chimneys and to better understand their impact on the GC environment and their relation with Galactic scale outflows.
Methods. We compare X-ray, radio, and infrared maps of the central few square degrees.
Results. The X-ray, radio, and infrared emissions are deeply interconnected, affecting one another and forming coherent features on scales of hundreds of parsecs, therefore indicating a common physical link associated with the GC outflow. We debate the location of the northern chimney and suggest that it might be located on the front side of the GC because of a significant tilt of the chimneys toward us. We report the presence of strong shocks at the interface between the chimneys and the interstellar medium, which are traced by radio and warm dust emission. We observe entrained molecular gas outflowing within the chimneys, revealing the multiphase nature of the outflow. In particular, the molecular outflow produces a long, strong, and structured shock along the northwestern wall of the chimney. Because of the different dynamical times of the various components of the outflow, the chimneys appear to be shaped by directed large-scale winds launched at different epochs. The data support the idea that the chimneys are embedded in an (often dominant) vertical magnetic field, which likely diverges with increasing latitude. We observe that the thermal pressure associated with the hot plasma appears to be smaller than the ram pressure of the molecular outflow and the magnetic pressure. This leaves open the possibility that either the main driver of the outflow is more powerful than the observed hot plasma, or the chimneys represent a “relic” of past and more powerful activity.
Conclusions. These multiwavelength observations corroborate the idea that the chimneys represent the channel connecting the quasi-continuous, but intermittent, activity at the GC with the base of the Fermi bubbles. In particular, the prominent edges and shocks observed in the radio and mid-infrared bands testify to the most powerful, more recent outflows from the central parsecs of the Milky Way.

The Relativistic Binary Programme on MeerKAT: Science objectives and first results

(2021)

Authors:

M Kramer, IH Stairs, V Venkatraman Krishnan, PCC Freire, F Abbate, M Bailes, M Burgay, S Buchner, DJ Champion, I Cognard, T Gautam, M Geyer, L Guillemot, H Hu, G Janssen, ME Lower, A Parthasarathy, A Possenti, S Ransom, DJ Reardon, A Ridolfi, M Serylak, RM Shannon, R Spiewak, G Theureau, W van Straten, N Wex, LS Oswald, B Posselt, C Sobey, ED Barr, F Camilo, B Hugo, A Jameson, S Johnston, A Karastergiou, M Keith, S Oslowski

Classification of multiwavelength transients with machine learning

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 502:1 (2021) 206-224

Authors:

K Sooknunan, M Lochner, Bruce A Bassett, HV Peiris, R Fender, AJ Stewart, M Pietka, PA Woudt, JD McEwen, O Lahav

Measurements of pulse jitter and single-pulse variability in millisecond pulsars using MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 502:1 (2021) 407-422

Authors:

A Parthasarathy, M Bailes, RM Shannon, W van Straten, S Osłowski, S Johnston, R Spiewak, DJ Reardon, M Kramer, V Venkatraman Krishnan, TT Pennucci, F Abbate, S Buchner, F Camilo, DJ Champion, M Geyer, B Hugo, A Jameson, A Karastergiou, MJ Keith, M Serylak

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:1 (2021) 057-057

Authors:

A Acharyya, R Adam, C Adams, I Agudo, A Aguirre-Santaella, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, L Amati, G Ambrosi, Eo Angüner, La Antonelli, C Aramo, A Araudo, T Armstrong, F Arqueros, K Asano, Y Ascasíbar, M Ashley, C Balazs, O Ballester, A Baquero Larriva, V Barbosa Martins, M Barkov, U Barres de Almeida, Ja Barrio, D Bastieri, J Becerra, G Beck, J Becker Tjus, W Benbow, M Benito, D Berge, E Bernardini, K Bernlöhr, A Berti, B Bertucci, V Beshley, B Biasuzzi, A Biland, E Bissaldi, J Biteau, O Blanch, J Blazek, F Bocchino, C Boisson, L Bonneau Arbeletche, P Bordas

Abstract:

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.