The LSST-DESC 3x2pt tomography optimization challenge
The Open Journal of Astrophysics Maynooth Academic Publishing 4:1 (2021)
Abstract:
This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.The MBHBM$^{\star}$ Project -- II. Molecular Gas Kinematics in the Lenticular Galaxy NGC 3593 Reveal a Supermassive Black Hole
(2021)
The search for living worlds and the connection to our cosmic origins
Experimental Astronomy Springer 54:2-3 (2021) 1275-1306
Abstract:
One of the most exciting scientific challenges is to detect Earth-like planets in the habitable zones of other stars in the galaxy and search for evidence of life. During the past 20 years the detection of exoplanets, orbiting stars beyond our own, has moved from science fiction to science fact. From the first handful of gas giants, found through radial velocity studies, detection techniques have increased in sensitivity, finding smaller planets and diverse multi-planet systems. Through enhanced ground-based spectroscopic observations, transit detection techniques and the enormous productivity of the Kepler space mission, the number of confirmed planets has increased to more than 2000. Several space missions, including TESS (NASA), now operational, and PLATO (ESA), will extend the parameter space for exoplanet discovery towards the regime of rocky Earth-like planets and take the census of such bodies in the neighbourhood of the Solar System. The ability to observe and characterise dozens of potentially rocky Earth-like planets now lies within the realm of possibility due to rapid advances in key space and imaging technologies and active studies of potential missions have been underway for a number of years. The latest of these is the Large UV Optical IR space telescope (LUVOIR), one of four flagship mission studies commissioned by NASA in support of the 2020 US Decadal Survey. LUVOIR, if selected, will be of interest to a wide scientific community and will be the only telescope capable of searching for and characterizing a sufficient number of exo-Earths to provide a meaningful answer to the question “Are we alone?”. This contribution is a White Paper that has been submitted in response to the ESA Voyage 2050 Call.The ASKAP Variables and Slow Transients (VAST) Pilot Survey
Publications of the Astronomical Society of Australia Cambridge University Press 38 (2021) e054
Abstract:
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to ~5 yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of ~162 h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24 mJy beam-1 and angular resolution of 12 – 20 arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.The gaseous natal environments of GPS and CSS sources with ASKAP -- FLASH
ArXiv 2110.03046 (2021)