HI Intensity Mapping with the MIGHTEE Survey: First Results of the H i Power Spectrum

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf975

Authors:

Aishrila Mazumder, Laura Wolz, Zhaoting Chen, Sourabh Paul, Mario G Santos, Matt Jarvis, Junaid Townsend, Srikrishna Sekhar, Russ Taylor

The ATLAS Virtual Research Assistant

(2025)

Authors:

HF Stevance, KW Smith, SJ Smartt, SJ Roberts, N Erasmus, DR Young, A Clocchiatti

A Multi-wavelength Characterization of the 2023 Outburst of MAXI J1807+132: Manifestations of Disk Instability and Jet Emission

(2025)

Authors:

Sandeep K Rout, M Cristina Baglio, Andrew Hughes, David M Russell, DM Bramich, Payaswini Saikia, Kevin Alabarta, Montserrat Armas Padilla, Sergio Campana, Stefano Covino, Paolo D'Avanzo, Rob Fender, Paolo Goldoni, Jeroen Homan, Fraser Lewis, Nicola Masetti, Sara Motta, Teo Munoz-Darias, Alessandro Papitto, Thomas D Russell, Gregory Sivakoff, Jakob van den Eijnden

A Persistent Disk Wind and Variable Jet Outflow in the Neutron-star Low-mass X-Ray Binary GX 13+1

The Astrophysical Journal American Astronomical Society 986:1 (2025) 41

Authors:

Daniele Rogantini, Jeroen Homan, Richard M Plotkin, Maureen van den Berg, James Miller-Jones, Joey Neilsen, Deepto Chakrabarty, Rob P Fender, Norbert Schulz

Abstract:

In low-mass X-ray binaries (LMXBs), accretion flows are often associated with either jet outflows or disk winds. Studies of LMXBs with luminosities up to roughly 20% of the Eddington limit indicate that these outflows generally do not co-occur, suggesting that disk winds might inhibit jets. However, previous observations of LMXBs accreting near or above the Eddington limit show that jets and winds can potentially coexist. To investigate this phenomenon, we carried out a comprehensive multiwavelength campaign (using the Very Large Array (VLA), Chandra/High Energy Transmission Grating Spectrometer (HETG), and NICER) on the near-Eddington neutron-star Z-source LMXB GX 13+1. NICER and Chandra/HETG observations tracked GX 13+1 across the entire Z track during high Eddington rates, detecting substantial resonance absorption features originating from the accretion disk wind in all X-ray spectra, which implies a persistent wind presence. Simultaneous VLA observations captured a variable radio jet, with radio emission notably strong during all flaring branch observations—contrary to typical behavior in Z sources—and weaker when the source was on the normal branch. Interestingly, no clear correlation was found between the radio emission and the wind features. Analysis of VLA radio light curves and simultaneous Chandra/HETG spectra demonstrates that an ionized disk wind and jet outflow can indeed coexist in GX 13+1, suggesting that their launching mechanisms are not necessarily linked in this system.

INSPIRE: INvestigating Stellar Populations In RElics – IX. KiDS J0842 + 0059: the first fully confirmed relic beyond the local Universe

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:3 (2025) 2555-2565

Authors:

C Tortora, G Tozzi, G Agapito, F La Barbera, C Spiniello, R Li, G Carlà, G D’Ago, E Ghose, F Mannucci, NR Napolitano, E Pinna, M Arnaboldi, D Bevacqua, A Ferré-Mateu, A Gallazzi, J Hartke, LK Hunt, M Maksymowicz-Maciata, C Pulsoni, P Saracco, D Scognamiglio, M Spavone

Abstract:

Relics are massive, compact and quiescent galaxies that assembled the majority of their stars in the early Universe and lived untouched until today, completely missing any subsequent size growth caused by mergers and interactions. They provide the unique opportunity to put constraints on the first phase of mass assembly in the Universe with the ease of being nearby. While only a few relics have been found in the local Universe, the INSPIRE project has confirmed 38 relics at higher redshifts (), fully characterizing their integrated kinematics and stellar populations. However, given the very small sizes of these objects and the limitations imposed by the atmosphere, structural parameters inferred from ground-based optical imaging are possibly affected by systematic effects that are difficult to quantify. In this paper, we present the first high-resolution image obtained with Adaptive Optics Ks-band observations on SOUL-LUCI@LBT of one of the most extreme INSPIRE relics, KiDS J0842 + 0059 at . We confirm the discy morphology of this galaxy (axis ratio of 0.24) and its compact nature (circularized effective radius of kpc) by modelling its 2D surface brightness profile with a point-spread function-convolved Sérsic model. We demonstrate that the surface mass density profile of KiDS J0842 + 0059 closely resembles that of the most extreme local relic, NGC 1277, as well as of high-redshift red nuggets. We unambiguously conclude that this object is a remnant of a high-redshift compact and massive galaxy, which assembled all of its mass at , and completely missed the merger phase of the galaxy evolution at high redshift.