Deblending the MIGHTEE-COSMOS survey with XID+: The resolved radio source counts to S 1.4 ≈ 5μJy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag285

Authors:

Eliab Malefahlo, Matt J Jarvis, Mario G Santos, Catherine Cress, Daniel JB Smith, Catherine Hale, José Afonso, Imogen H Whittam, Mattia Vaccari, Ian Heywood, Shuowen Jin, Fangxia An

Abstract:

Abstract Deep radio continuum surveys provide fundamental constraints on galaxy evolution, but source confusion limits sensitivity to the faintest sources. We present a complete framework for producing high-fidelity deblended radio catalogues from the confused MIGHTEE maps using the probabilistic deblending framework XID+ and prior positions from deep multi-wavelength data in the COSMOS field. To assess performance, we construct MIGHTEE-like simulations based on the Tiered Radio Extragalactic Continuum Simulation (T-RECS) radio source population, ensuring a realistic distribution of star-forming galaxies and active galactic nuclei (AGN) for validation. Through these simulations, we show that prior catalogue purity is the dominant factor controlling deblending accuracy: a high-purity prior, containing only sources with a high likelihood of radio detection, recovers accurate flux densities and reproduces input source counts down to ~3σ (where σ = thermal noise). On the other hand, a complete prior overestimates the source counts due to spurious detections. Our optimal strategy combines the high-purity prior with a mask that removes sources detected above 50 μJy. Applied to the ~1.3 deg2 area of the MIGHTEE-COSMOS field defined by overlapping multi-wavelength data, this procedure yields a deblended catalogue of 89,562 sources. The derived 1.4 GHz source counts agree with independent P(D) analyses and indicate that we resolve the radio background to ~4.8 μJy. We also define a recommended high-fidelity sample of 20,757 sources, based on detection significance, flux density, and goodness-of-fit, which provides reliable flux densities for individual sources in the confusion-limited regime.

Investigating the influence of radio-faint active galactic nuclei on the infrared-radio correlation of massive galaxies

Astronomy & Astrophysics EDP Sciences 706 (2026) A111-A111

Authors:

Giorgia Peluso, Ivan Delvecchio, Jack Radcliffe, Emanuele Daddi, Roger Deane, Matt Jarvis, Giovanni Zamorani, Isabella Prandoni, Myriam Gitti, Cristiana Spingola, Francesco Ubertosi, Mark Sargent, Vernesa Smolčić, Wuji Wang, Jacinta Delhaize, Shuowen Jin, Adam Deller

Abstract:

Context. It is well known that star-forming galaxies (SFGs) exhibit a tight correlation between their radio and infrared emissions, commonly referred to as the infrared-radio correlation (IRRC). Recent empirical studies have reported a dependence of the IRRC on the galaxy stellar mass, in which more massive galaxies tend to show lower infrared-to-radio ratios ( q IR ) with respect to less massive galaxies. One possible, yet unexplored, explanation is a residual contamination of the radio emission from active galactic nuclei (AGNs), not captured through “radio-excess” diagnostics. Aims. To investigate this hypothesis, we aim to statistically quantify the contribution of AGN emission to the radio luminosities of SFGs located within the scatter of the IRRC. Methods. Our Very Large Baseline Array (VLBA) AGN-sCAN program has targeted 500 galaxies that follow the q IR distribution of the IRRC, i.e., with no prior evidence for radio-excess AGN emission based on low-resolution (∼arcsec) VLA radio imaging. Our VLBA 1.4 GHz observations reach a 5 σ sensitivity limit of 25 μJy/beam, corresponding to a radio-brightness temperature of T b  ∼ 10 5 K. This classification serves as a robust AGN diagnostic, regardless of the host galaxy’s star formation rate. Results. We detect four VLBA sources in the deepest regions, which are also the faintest VLBI-detected AGNs in SFGs to date. The effective AGN detection rate is 9%, when considering a control sample matched in mass and sensitivity, which is in good agreement with the extrapolation of previous radio AGN number counts. Despite the non-negligible AGN flux contamination (∼30%) in our individual VLBA detections, we find that the peak of the q IR distribution is completely unaffected by this correction. Although we cannot rule out a high incidence of radio-silent AGNs at (sub)μJy levels among the VLBA non-detections, we derive a conservative upper limit of < 0.1 dex of their cumulative impact on the q IR distribution. We conclude that residual AGN contamination from non-radio-excess AGNs is unlikely to be the primary driver of the M – dependent IRRC.

A study of two Type IIb supernovae: SNe 2008aq and 2019gaf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 546:2 (2026) stag093

Authors:

Mridweeka Singh, Devendra K Sahu, Raya Dastidar, Rishabh Singh Teja, Anjasha Gangopadhyay, GC Anupama, D Andrew Howell, K Azalee Bostroem, Curtis McCully, Jamison Burke, Arti Joshi, Daichi Hiramatsu, Hyobin Im, Shubham Srivastav, Kuntal Misra

Abstract:

ABSTRACT We present photometric and spectroscopic studies of two core-collapse supernovae (SNe) 2008aq and 2019gaf in the optical wavelengths. Light curve and spectral sequence of both the SNe are similar to those of other Type IIb SNe. The pre-maximum spectrum of SN 2008aq showed prominent H $\alpha$ lines, the He lines started appearing in the near maximum spectrum. The near maximum spectrum of SN 2019gaf shows shallow H $\alpha$ absorption and He lines with almost similar strength. Both the SNe show transition from hydrogen-dominated spectra to helium-dominated spectra within a month after maximum brightness. The velocity evolution of SN 2008aq matches well with those of other well-studied Type IIb SNe, while SN 2019gaf shows higher velocities. Close to maximum light, the H $\alpha$ and He i line velocities of SN 2019gaf are $\sim$ 2000 and $\sim$ 4000 km s$^{-1}$ higher than other well-studied Type IIb SNe. Semi-analytical modelling indicates SN 2019gaf to be a more energetic explosion with a smaller ejecta mass than SN 2008aq. The zero-age main-sequence (ZAMS) mass of the progenitor estimated using the nebular spectra of SN 2008aq ranges between 13 and 20 M$_\odot$, while for SN 2019gaf, the inferred ZAMS mass is between 13 and 25 M$_\odot$. The [O i] to [Ca ii] lines flux ratio favours a less massive progenitor star in a binary system for both the SNe.

Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag163

Authors:

FJ Cowie, RP Fender, I Heywood, F Carotenuto, JH Matthews, B Reville, L Olivera-Nieto, AJ Cooper, AK Hughes, K Savard, PA Woudt, J van den Eijnden, N Grollimund, P Saikia

Abstract:

Abstract Accreting systems can launch powerful outflows which interact with the surrounding medium. We combine new radio observations of the accreting neutron star X-ray binary (XRB) Circinus X-1 (Cir X-1) with archival radio observations going back 24 years. The ∼3 pc scale wide-angle radio and X-ray emitting caps found around Cir X-1 are identified as synchrotron emitting shocks with significant proper motion and morphological evolution on decade timescales. Proper motion measurements of the shocks reveal they are mildly relativistic and decelerating, with apparent velocity of 0.14c ± 0.03c at a propagation distance of 2 pc. We demonstrate that these shocks are likely powered by a hidden relativistic (≳ 0.3c) wide-angle conical outflow launched in 1972 ± 3, in stark contrast to known structures around other XRBs formed by collimated jets over 1000s of years. The minimum time-averaged power of the outflow required to produce the observed synchrotron emission is ∼0.1LEdd, while the time-averaged power required for the kinetic energy of the shocks is $\sim 40 \left(\frac{n}{10^{-2} \textrm{cm}^{-3}}\right)L_\textrm{Edd}$, where n is the average ambient medium number density. This reveals the outflow powering the shocks is likely significantly super-Eddington. We measure significant linear polarisation up to 52 ± 6% in the shocks demonstrating the presence of an ordered magnetic field of strength ∼200 μG. We show that the shocks are potential PeVatrons, capable of accelerating electrons to ∼0.7 PeV and protons to ∼20 PeV, and we estimate the injection and energetic efficiencies of electron acceleration in the shocks. Finally, we predict that next generation gamma-ray facilities may be able to detect hadronic signatures from the shocks.

The odyssey of the black hole low mass X-ray binary GX 339–4: Five years of dense multi-wavelength monitoring.

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag139

Authors:

E Tremou, S Corbel, R Fender, P Woudt, JCA Miller-Jones, I Heywood, F Carotenuto, S Motta, A Tzioumis, PJ Groot, DM Russell, J Crook-Mansour, P Saikia, W Yu, J van den Eijnden, AJ van der Horst, DRA Williams-Baldwin, X Zhang

Abstract:

Abstract We present the longest and the densest quasi-simultaneous radio, X-ray and optical campaign of the black hole low mass X-ray binary GX 339–4, covering five years of weekly GX 339–4 monitoring with MeerKAT, Swift/XRT and MeerLICHT, respectively. Complementary high frequency radio data with the Australia Telescope Compact Array are presented to track in more detail the evolution of GX 339–4 and its transient ejecta. During the five years, GX 339–4 has been through two ‘hard-only’ outbursts and two ‘full’ outbursts, allowing us to densely sample the rise, quenching and re-activation of the compact jets. Strong radio flares were also observed close to the transition between the hard and the soft states. Following the radio flare, a transient optically thin ejection was spatially resolved during the 2020 outburst, and was observed for a month. We also discuss the radio/X-ray correlation of GX 339–4 during this five year period, which covers several states in detail from the rising phase to the quiescent state. This campaign allowed us to follow ejection events and provide information on the jet proper motion and its intrinsic velocity. With this work we publicly release the weekly MeerKAT L-band radio maps from data taken between September 2018 and October 2023.