Discovery of the Optical and Radio Counterpart to the Fast X-Ray Transient EP 240315a

The Astrophysical Journal Letters American Astronomical Society 969:1 (2024) L14

Authors:

JH Gillanders, L Rhodes, S Srivastav, F Carotenuto, J Bright, ME Huber, HF Stevance, SJ Smartt, KC Chambers, T-W Chen, R Fender, A Andersson, AJ Cooper, PG Jonker, FJ Cowie, T de Boer, N Erasmus, MD Fulton, H Gao, J Herman, C-C Lin, T Lowe, EA Magnier, H-Y Miao

Abstract:

Fast X-ray Transients (FXTs) are extragalactic bursts of soft X-rays first identified ≳10 yr ago. Since then, nearly 40 events have been discovered, although almost all of these have been recovered from archival Chandra and XMM-Newton data. To date, optical sky surveys and follow-up searches have not revealed any multiwavelength counterparts. The Einstein Probe, launched in 2024 January, has started surveying the sky in the soft X-ray regime (0.5–4 keV) and will rapidly increase the sample of FXTs discovered in real time. Here we report the first discovery of both an optical and radio counterpart to a distant FXT, the fourth source publicly released by the Einstein Probe. We discovered a fast-fading optical transient within the 3′ localization radius of EP 240315a with the all-sky optical survey ATLAS, and our follow-up Gemini spectrum provides a redshift, z = 4.859 ± 0.002. Furthermore, we uncovered a radio counterpart in the S band (3.0 GHz) with the MeerKAT radio interferometer. The optical (rest-frame UV) and radio luminosities indicate that the FXT most likely originates from either a long gamma-ray burst or a relativistic tidal disruption event. This may be a fortuitous early mission detection by the Einstein Probe or may signpost a mode of discovery for high-redshift, high-energy transients through soft X-ray surveys, combined with locating multiwavelength counterparts.

Flux dependence of redshift distribution and clustering of LOFAR radio sources

Astronomy & Astrophysics EDP Sciences (2024)

Authors:

Nitesh Bhardwaj, J Dominik Schwarz, L Catherine Hale, J Kenneth Duncan, Stefano Camera, S Caroline Heneka, J Szymon Nakoneczny, Ja Huub Rottgering, M Thilo Siewert, Prabhakar Tiwari, Jinglan Zheng, George Miley, Cyril Tasse

Abstract:

<jats:p>We study the flux density dependence of the redshift distribution of low-frequency radio sources observed in the LOFAR Two-metre Sky Survey (LoTSS) deep fields and apply it to estimate the clustering length of the large-scale structure of the Universe, examining flux density limited samples (1 mJy, 2 mJy, 4 mJy and 8 mJy) of LoTSS wide field radio sources. We utilise and combine the posterior probability distributions of photometric redshift determinations for LoTSS deep field observations from three different fields (Boötes, Lockman hole and ELAIS-N1, together about $26$ square degrees of sky), which are available for between $91&lt;!PCT!&gt;$ to $96&lt;!PCT!&gt;$ of all sources above the studied flux density thresholds and observed in the area covered by multi-frequency data. We estimate uncertainties by a bootstrap method. We apply the inferred redshift distribution on the LoTSS wide area radio sources from the HETDEX field (LoTSS-DR1; about $424$ square degrees) and make use of the Limber approximation and a power-law model of three dimensional clustering to measure the clustering length, $r_0$, for various models of the evolution of clustering. We find that the redshift distributions from all three LoTSS deep fields agree within expected uncertainties. We show that the radio source population probed by LoTSS at flux densities above $1$ mJy has a median redshift of at least $0.9$. At $2$ mJy, we measure the clustering length of LoTSS radio sources to be $r_0 = (10.1 $Mpc in the context of the comoving clustering model. Our findings are in agreement with measurements at higher flux density thresholds at the same frequency and with measurements at higher frequencies in the context of the comoving clustering model. Based on the inferred flux density limited redshift distribution of LoTSS deep field radio sources, the full wide area LoTSS will eventually cover an effective (source weighted) comoving volume of about $10\ $ Gpc$^3$.</jats:p>

Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars

ArXiv 2406.04135 (2024)

Authors:

AJ Cooper, Z Wadiasingh

WISDOM Project – XXI. Giant molecular clouds in the central region of the barred spiral galaxy NGC 613: a steep size – linewidth relation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2024) stae1394-stae1394

Authors:

Woorak Choi, Martin Bureau, Lijie Liu, Michele Cappellari, Timothy A Davis, Jindra Gensior, Fu-Heng Liang, Anan Lu, Sanghyuk Moon, Ilaria Ruffa, Thomas G Williams, Aeree Chung

Abstract:

<jats:title>Abstract</jats:title> <jats:p>NGC 613 is a nearby barred spiral galaxy with a nuclear ring. Exploiting high spatial resolution (≈20 pc) Atacama Large Millimeter/sub-millimeter Array 12CO(1-0) observations, we study the giant molecular clouds (GMCs) in the nuclear ring and its vicinity, identifying 158 spatially- and spectrally-resolved GMCs. The GMC sizes (Rc) are comparable to those of the clouds in the Milky Way (MW) disc, but their gas masses, observed linewidths (σobs, los) and gas mass surface densities are larger. The GMC size – linewidth relation ($\sigma _{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{0.77}$) is steeper than that of the clouds of the MW disc and centre, and the GMCs are on average only marginally gravitationally bound (with a mean virial parameter 〈αobs, vir〉 ≈ 1.7). We discuss the possible origins of the steep size – linewidth relation and enhanced observed linewidths of the clouds and suggest that a combination of mechanisms such as stellar feedback, gas accretion and cloud-cloud collisions, as well as the gas inflows driven by the large-scale bar, may play a role.</jats:p>

WISDOM project XX. – Strong shear tearing molecular clouds apart in NGC 524

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) stae1395-stae1395

Authors:

Anan Lu, Daryl Haggard, Martin Bureau, Jindra Gensior, Sarah Jeffreson, Carmelle Robert, Thomas G Williams, Fu-Heng Liang, Woorak Choi, Timothy A Davis, Sara Babic, Hope Boyce, Benjamin Cheung, Laurent Drissen, Jacob S Elford, Lijie Liu, Thomas Martin, Carter Rhea, Laurie Rousseau-Nepton, Ilaria Ruffa

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>Early-type galaxies (ETGs) are known to harbour dense spheroids of stars but scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. We study here the ETG NGC 524, with strong shear suspected to result in a smooth molecular gas disc and low star-formation efficiency (SFE). We present new spatially resolved observations of the 12CO(2-1)-emitting cold molecular gas from the Atacama Large Millimeter/sub-millimeter Array (ALMA) and of the warm ionized-gas emission lines from SITELLE at the Canada–France–Hawaii Telescope. Although constrained by the resolution of the ALMA observations (≈37 pc), we identify only 52 GMCs with radii ranging from 30 to 140 pc, a low mean molecular gas mass surface density 〈Σgas〉 ≈ 125 M⊙ pc−2 and a high mean virial parameter 〈αobs, vir〉 ≈ 5.3. We measure spatially resolved molecular gas depletion times (τdep ≡ 1/SFE) with a spatial resolution of ≈100 pc within a galactocentric distance of 1.5 kpc. The global depletion time is ≈2.0 Gyr but τdep increases towards the galaxy centre, with a maximum τdep, max ≈ 5.2 Gyr. However, no pure H ii region is identified in NGC 524 using ionized-gas emission-line ratio diagnostics, so the τdep inferred are in fact lower limits. Measuring the GMC properties and dynamical states, we conclude that shear is the dominant mechanism shaping the molecular gas properties and regulating SF in NGC 524. This is supported by analogous analyses of the GMCs in a simulated ETG similar to NGC 524.</jats:p>