A Study of Two Type IIb Supernovae: SNe 2008aq and 2019gaf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag093

Authors:

Mridweeka Singh, Devendra K Sahu, Raya Dastidar, Rishabh Singh Teja, Anjasha Gangopadhyay, GC Anupama, D Andrew Howell, K Azalee Bostroem, Curtis McCully, Jamison Burke, Arti Joshi, Daichi Hiramatsu, Hyobin Im, Shubham Srivastav, Kuntal Misra

Abstract:

Abstract We present photometric and spectroscopic studies of two core-collapse supernovae (SNe) 2008aq and 2019gaf in the optical wavelengths. Light curve and spectral sequence of both the SNe are similar to those of other Type IIb SNe. The pre-maximum spectrum of SN 2008aq showed prominent H α lines, the He lines started appearing in the near maximum spectrum. The near maximum spectrum of SN 2019gaf shows shallow H α absorption and He lines with almost similar strength. Both the SNe show transition from hydrogen-dominated spectra to helium-dominated spectra within a month after maximum brightness. The velocity evolution of SN 2008aq matches well with those of other well-studied Type IIb SNe, while SN 2019gaf shows higher velocities. Close to maximum light, the H α and He I line velocities of SN 2019gaf are ∼ 2000 km sec−1 and ∼ 4000 km sec−1 higher than other well-studied Type IIb SNe. Semi-analytical modeling indicates SN 2019gaf to be a more energetic explosion with a smaller ejecta mass than SN 2008aq. The zero-age main-sequence (ZAMS) mass of the progenitor estimated using the nebular spectra of SN 2008aq ranges between 13 to 20 M⊙, while for SN 2019gaf, the inferred ZAMS mass is between 13 to 25 M⊙. The [O i] to [Ca ii] lines flux ratio favors a less massive progenitor star in a binary system for both the SNe.

Cosmic rays, gamma rays and neutrinos from discrete black hole X-ray binary ejecta

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag080

Authors:

Nicolas J Bacon, Alex J Cooper, Dimitrios Kantzas, James H Matthews, Rob Fender

Abstract:

Abstract The origin of cosmic rays from outside the Solar system are unknown, as they are deflected by the interstellar magnetic field. Supernova remnants are the main candidate for cosmic rays up to PeV energies but due to lack of evidence, they cannot be concluded as the sources of the most energetic Galactic CRs. We investigate discrete ejecta produced in state transitions of black hole X-ray binary systems as a potential source of cosmic rays, motivated by recent >100 TeV γ-ray detections by LHAASO. Starting from MAXI J1820+070, we examine the multi-wavelength observations and find that efficient particle acceleration may take place (i.e. into a robust power-law), up to ∼2 × 1016μ−1/2 eV, where μ is the ratio of particle energy to magnetic energy. From these calculations, we estimate the global contribution of ejecta to the entire Galactic spectrum to be $\sim 1~{{\ \rm per\ cent}}$, with the cosmic ray contribution rising to $\sim 5~{{\ \rm per\ cent}}$ at PeV energies, assuming roughly equal energy in non-thermal protons, non-thermal electrons and magnetic fields. In addition, we calculate associated γ-ray and neutrino spectra of the MAXI J1820+070 ejecta to investigate new detection methods with CTAO, which provide strong constraints on initial ejecta size of order 107 Schwarzschild radii (10−5 pc) assuming a period of adiabatic expansion.

Light Travel Time Effects in Kilonova Models

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag068

Authors:

F McNeill, SA Sim, CE Collins, LJ Shingles, R Damgaard, A Sneppen, JH Gillanders

Abstract:

Abstract The extremely rapid evolution of kilonovae results in spectra that change on an hourly basis. These spectra are key to understanding the processes occurring within the event, but this rapid evolution is an unfamiliar domain compared to other explosive transient events, such as supernovae. In particular, the most obvious P Cygni feature in the spectra of AT2017gfo – commonly attributed to strontium – possesses an emission component that emerges after, and ultimately outlives, its associated absorption dip. This delay is theorised to arise from reverberation effects, wherein photons emitted earlier in the kilonova’s evolution are scattered before reaching the observer, causing them to be detected at later times. We aim to examine how the finite speed of light – and therefore the light travel time to an observer – contributes to the shape and evolution of spectral features in kilonovae. Using a simple model, and tracking the length of the journey photons undertake to an observer, we are able to test the necessity of accounting for this time delay effect when modelling kilonovae. In periods where the photospheric temperature is rapidly evolving, we show spectra synthesised using a time independent approach are visually distinct from those where these time delay effects are accounted for. Therefore, in rapidly evolving events such as kilonovae, time dependence must be taken into account.

Exploring the potential for ultra-relativistic jets in Scorpius X-1 with low angular resolution radio observations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag046

Authors:

I Stephens, L Rhodes, AJ Cooper, SE Motta, JS Bright

Abstract:

Abstract Scorpius X-1 (Sco X-1) is a neutron star X-ray binary in which the neutron star is accreting rapidly from a low mass stellar companion. At radio frequencies, Sco X-1 is highly luminous and has been observed to have jet ejecta moving at mildly relativistic velocities away from a radio core, which corresponds to the binary position. In this Letter, we present new radio observations of Sco X-1 taken with the Karl G. Jansky Very Large Array. Using a fast imaging method, we find that the 10 and 15 GHz data show a number of flares. We interpret these flares as the possible launching of fast jets (βΓ > 2), previously observed in Sco X-1 and called ultra-relativistic flows, and their interaction with slower moving jet ejecta. Using the period between successive flares, we find that it is possible for the fast jets to remain undetected, as a result of the fast jet velocity being sufficiently high to cause the jet emission to be beamed in the direction of the motion and out of our line of sight. Our findings demonstrate that the ultra-relativistic flows could be explained by the presence of fast jets in the Sco X-1 system.

Large-scale radio bubbles around the black hole transient V4641 Sgr

Astronomy & Astrophysics EDP Sciences (2026)

Authors:

N Grollimund, S Corbel, R Fender, JH Matthews, I Heywood, FJ Cowie, AK Hughes, F Carotenuto, SE Motta, P Woudt

Abstract:

Black holes (BHs) in microquasars can launch powerful relativistic jets that have the capacity to travel up to several parsecs from the compact object and interact with the interstellar medium. Recently, the detection of large-scale very-high-energy (VHE) gamma-ray emission around the black hole transient V4641 Sgr and other BH-jet systems suggested that jets from microquasars may play an important role in the production of galactic cosmic rays. V4641 Sgr is known for its superluminal radio jet discovered in 1999, but no radio counterpart of a large-scale jet has been observed. The goal of this work is to search for a radio counterpart of the extended VHE source. We observed V4641 Sgr with the MeerKAT radio telescope at the and bands and produced deep maps of the field using high dynamic range techniques. L UHF We report the discovery of a large-scale (∼ 35 ), bow-tie-shaped, diffuse, radio structure around V4641 Sgr, with similar angular size to the extended X-ray emission discovered by XRISM. However, it is not spatially coincident with the extended VHE emission. After discussing the association of the structure with V4641 Sgr, we investigate the nature of the emission mechanism. We suggest that the bow-tie structure arose from the long-term action of large-scale jets or disk winds from V4641 Sgr. If the emission mechanism is of synchrotron origin, the radio/X-ray extended structure implies acceleration of electrons up to more than 100 as far as tens of parsecs from the black hole. pc TeV