Search for the Optical Counterpart of Einstein Probe–discovered Fast X-Ray Transients from the Lulin Observatory

The Astrophysical Journal Supplement Series American Astronomical Society 281:1 (2025) 20-20

Authors:

Amar Aryan, Ting-Wan Chen, Sheng Yang, James H Gillanders, Albert KH Kong, SJ Smartt, Heloise F Stevance, Yi-Jung Yang, Aysha Aamer, Rahul Gupta, Lele Fan, Wei-Jie Hou, Hsiang-Yao Hsiao, Amit Kumar, Cheng-Han Lai, Meng-Han Lee, Yu-Hsing Lee, Hung-Chin Lin, Chi-Sheng Lin, Chow-Choong Ngeow, Matt Nicholl, Yen-Chen Pan, Shashi Bhushan Pandey, Aiswarya Sankar.K, Shubham Srivastav, Guanghui Sun, Ze-Ning Wang

Abstract:

Abstract The launch of the Einstein probe (EP) mission has revolutionized the detection and follow-up observations of fast X-ray transients (FXTs) by providing prompt and timely access to their precise localizations. In the first year of its operation, the EP mission reported the discovery of 72 high signal-to-noise FXTs. Subjected to the visibility in the sky and weather conditions, we search for the optical counterparts of 42 EP-discovered FXTs from the Lulin Observatory. We successfully detected the optical counterparts of 12 FXTs, and five of those were first discovered by us from the Lulin Observatory. We find that the optical counterparts are generally faint ( r  > 20 mag) and decline rapidly (>0.5 mag day −1 ). We also find that 12 out of 42 FXTs show direct evidence of their association with gamma-ray bursts (GRBs) through significant temporal and spatial overlapping. Furthermore, the luminosities and redshifts of FXTs with confirmed optical counterparts in our observations are fully consistent with the faintest end of the GRB population. However, the nondetection of any associated optical counterpart with a significant fraction of FXTs suggests that EP FXTs are likely a subset of the so-called “dark FXTs,” similar to “dark GRBs.” Additionally, the luminosities of two FXTs with confirmed redshifts are also consistent with jetted tidal disruption events (TDEs). However, we find that the optical luminosities of FXTs differ significantly from typical supernova shock breakout or kilonova emissions. Thus, we conclude that a significant fraction of EP-discovered FXTs are associated with events having relativistic jets; either a GRB or a jetted TDE.

MIGHTEE-H  i : The MiM ☆ relation of massive galaxies and the H  i mass function at 0.25 < z < 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1857

Authors:

Hengxing Pan, Matt J Jarvis, Ian Heywood, Tariq Yasin, Natasha Maddox, Mario G Santos, Maarten Baes, Anastasia A Ponomareva, Sambatriniaina HA Rajohnson

Abstract:

Abstract The relationship between the already formed stellar mass in a galaxy and the gas reservoir of neutral atomic hydrogen, is a key element in our understanding of how gas is turned into stars in galaxy haloes. In this paper, we measure the $M_{\rm H\, \small {\rm i}}-M_{\star }$ relation based on a stellar-mass selected sample at 0.25 < z < 0.5 and the MIGHTEE-H i DR1 spectral data. Using a powerful Bayesian stacking technique, for the first time we are also able to measure the underlying bivariate distribution of H i mass and stellar mass of galaxies with M⋆ > 109.5 M⊙, finding that an asymmetric underlying H i distribution is strongly preferred by our complete samples. We define the concepts of the average of the logarithmic H i mass, $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$, and the logarithmic average of the H i mass, $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$, and find that the difference between $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$ and $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$ can be as large as ∼0.5 dex for the preferred asymmetric H i distribution. We observe shallow slopes in the underlying $M_{\rm H\, \small {\rm i}}-M_{\star }$ scaling relations, suggesting the presence of an upper H i mass limit beyond which a galaxy can no longer retain further H i gas. From our bivariate distribution we also infer the H i mass function at this redshift and find tentative evidence for a decrease of 2-10 times in the co-moving space density of the most H i massive galaxies up to z ∼ 0.5.

MIGHTEE-H  i : the direct detection of neutral hydrogen in galaxies at z > 0.25

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Vărăşteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

Abstract:

ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H  i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.

The First Radio-bright Off-nuclear Tidal Disruption Event AT 2024tvd Reveals the Fastest-evolving Double-peaked Radio Emission

The Astrophysical Journal Letters American Astronomical Society 992:2 (2025) l18

Authors:

Itai Sfaradi, Raffaella Margutti, Ryan Chornock, Kate D Alexander, Brian D Metzger, Paz Beniamini, Rodolfo Barniol Duran, Yuhan Yao, Assaf Horesh, Wael Farah, Edo Berger, AJ Nayana, Yvette Cendes, Tarraneh Eftekhari, Rob Fender, Noah Franz, Dave A Green, Erica Hammerstein, Wenbin Lu, Eli Wiston, Yirmi Bernstein, Joe Bright, Collin T Christy, Luigi F Cruz, David R DeBoer, Walter W Golay, Adelle J Goodwin, Mark Gurwell, Garrett K Keating, Tanmoy Laskar, James CA Miller-Jones, Alexander W Pollak, Ramprasad Rao, Andrew Siemion, Sofia Z Sheikh, Nadav Shoval, Sjoert van Velzen

Abstract:

We present the first multiepoch broadband radio and millimeter monitoring of an off-nuclear tidal disruption event (TDE) using the Very Large Array, the Atacama Large Millimeter/submillimeter Array, the Allen Telescope Array, the Arcminute Microkelvin Imager Large Array, and the Submillimeter Array. The off-nuclear TDE AT 2024tvd exhibits double-peaked radio light curves and the fastest-evolving radio emission observed from a TDE to date. With respect to the optical discovery date, the first radio flare rises faster than Fν ∼ t9 at Δt = 88–131 days and then decays as fast as Fν ∼ t−6. The emergence of a second radio flare is observed at Δt ≈ 194 days with an initial fast rise of Fν ∼ t18 and an optically thin decline of Fν ∼ t−12. We interpret these observations in the context of a self-absorbed and free–free absorbed synchrotron spectrum, while accounting for both synchrotron and inverse Compton cooling. We find that a single prompt outflow cannot easily explain these observations and that it is likely that either there is only one outflow that was launched at Δt ∼ 80 days or there are two distinct outflows, with the second launched at Δt ∼ 170–190 days. The nature of these outflows, whether sub-, mildly, or ultrarelativistic, is still unclear, and we explore these different scenarios. Finally, we find a temporal coincidence between the launch time of the first radio-emitting outflow and the onset of a power-law component in the X-ray spectrum, attributed to inverse Compton scattering of thermal photons.

Gamma-ray lines, electron–positron annihilation, and possible radio emission in X-ray pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3993-4002

Authors:

Alexander A Mushtukov, Emir Tataroglu, Alex J Cooper, Sergey S Tsygankov

Abstract:

ABSTRACT Accretion on to neutron stars (NSs) in X-ray pulsars (XRPs) results in intense X-ray emission, and under specific conditions, high-energy nuclear interactions that produce gamma-ray photons at discrete energies. These interactions are enabled by the high free-fall velocities of accreting nuclei near the NS surface and give rise to characteristic gamma-ray lines, notably at 2.2, 5.5, and 67.5 MeV. We investigate the production mechanisms of these lines and estimate the resulting gamma-ray luminosities, accounting for the suppression effects of radiative deceleration in bright XRPs and the creation of electron–positron pairs in strong magnetic fields. The resulting annihilation of these pairs leads to a secondary emission line at ${\sim} 511$ keV. We also discuss the possibility that non-stationary pair creation in the polar cap region could drive coherent radio emission, though its detectability in accreting systems remains uncertain. Using a numerical framework incorporating general relativistic light bending and magnetic absorption, we compute the escape fraction of photons and distinguish between actual and apparent gamma-ray luminosities. Our results identify the parameter space – defined by magnetic field strength, accretion luminosity, and NS compactness – where these gamma-ray signatures may be observable by upcoming MeV gamma-ray missions. In particular, we highlight the diagnostic potential of detecting gravitationally redshifted gamma-ray lines and annihilation features for probing the mass–radius relation and magnetospheric structure of NSs.