Luminous red novae: Stellar mergers or giant eruptions?⋆

Astronomy & Astrophysics EDP Sciences 630 (2019) a75

Authors:

A Pastorello, E Mason, S Taubenberger, M Fraser, G Cortini, L Tomasella, MT Botticella, N Elias-Rosa, R Kotak, SJ Smartt, S Benetti, E Cappellaro, M Turatto, L Tartaglia, SG Djorgovski, AJ Drake, M Berton, F Briganti, J Brimacombe, F Bufano, Y-Z Cai, S Chen, EJ Christensen, F Ciabattari, E Congiu, A Dimai, C Inserra, E Kankare, L Magill, K Maguire, F Martinelli, A Morales-Garoffolo, P Ochner, G Pignata, A Reguitti, J Sollerman, S Spiro, G Terreran, DE Wright

VEXAS: VISTA EXtension to Auxiliary Surveys

Astronomy & Astrophysics EDP Sciences 630 (2019) a146

Authors:

C Spiniello, A Agnello

VizieR Online Data Catalog: KiDS-BEXGO catalog (Khramtsov+, 2019)

VizieR Online Data Catalog (2019) J/A+A/632/A56-J/A+A/632/A56

Authors:

V Khramtsov, A Sergeyev, C Spiniello, C Tortora, NR Napolitano, A Agnello, F Getman, JTA de Jong, K Kuijken, M Radovich, H-Y Shan, V Shulga

SN 2016gsd: An unusually luminous and linear type II supernova with high velocities

(2019)

Authors:

TM Reynolds, M Fraser, S Mattila, M Ergon, P Lundqvist, L Dessart, Subo Dong, N Elias-Rosa, L Galbany, CP Gutiérrez, T Kangas, E Kankare, R Kotak, H Kuncarayakti, A Pastorello, O Rodriguez, SJ Smartt, M Stritzinger, L Tomasella, Ping Chen, J Harmanen, G Hozzeinzadeh, D Andrew Howell, C Inserra, M Nicholl, M Nielsen, K Smith, A Somero, R Tronsgaard, DR Young

Late-outburst radio flaring in SS Cyg and evidence for a powerful kinetic output channel in cataclysmic variables

Monthly Notices of the Royal Astronomical Society Oxford University Press 490:1 (2019) L76-L80

Authors:

Rob Fender, Joe Bright, Kunal Mooley, James Miller-Jones

Abstract:

Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their ubiquity and energetic significance for the accretion flow has remained uncertain. We present new radio observations of the CV SS Cyg with Arcminute Microkelvin Imager Large Array, which show for the second time late-ouburst radio flaring, in 2016 April. This flaring occurs during the optical flux decay phase, about 10 d after the well-established early-time radio flaring. We infer that both the early- and late-outburst flares are a common feature of the radio outbursts of SS Cyg, albeit of variable amplitudes, and probably of all dwarf novae. We furthermore present new analysis of the physical conditions in the best-sampled late-outburst flare, from 2016 February, which showed clear optical depth evolution. From this we can infer that the synchrotron-emitting plasma was expanding at about 1 per cent of the speed of light, and at peak had a magnetic field of order 1 G and total energy content ≥10 erg. While this result is independent of the geometry of the synchrotron-emitting region, the most likely origin is in a jet carrying away a significant amount of the available accretion power. 33