Enhanced fluorescence from x-ray line coincidence pumping of K-pumped Cl and Mg-pumped Ge plasmas

Proceedings Volume 11111, X-Ray Lasers and Coherent X-Ray Sources: Development and Applications XIII Society of Photo-optical Instrumentation Engineers (2019)

Authors:

J Nilsen, D Burridge, LMR Hobbs, D Hoarty, P Beiersdorfer, GV Brown, N Hell, D Panchenko, MF Gu, AM Saunders, HA Scott, RA London, P Hatfield, MP Hill, L Wilson, R Charles, CRD Brown, Steven Rose

Abstract:

Many resonant photo-pumped X-ray laser schemes that use a strong pump line such as Ly-α or He-α to populate the upper laser state of a separate lasing material have been proposed over the last four decades but none have been demonstrated. As a first step to creating a photo-pumped X-ray laser we decided to reinvestigate some of these schemes at the Orion laser facility with the goal to demonstrate enhanced fluorescence as a first step toward creating a laser. In particular we look at using the Ly-α or He-α K lines to pump the 1s – 3p and 4p transitions in H-like Cl and see fluorescence on the 4f -3d line at 65 Å and the 3d – 2p line at 23 Å. Preliminary experiments are presented that show a modest enhancement of 40% on the 3d-2p line. As an alternative we also look at enhancing the 2p – 2s line in Ne-like Ge at 65Å using the Ly-α Mg line to photo-pump the 2s – 3p line of Ne-like Ge. Calculations are presented that suggest modest enhancements of 2.5 and recent experiments will be presented that show emission from a Ge plasma pumped by the Ly-α Mg line.

Secularly powered outflows from AGN: the dominance of non-merger driven supermassive black hole growth

Monthly notices of the Royal Astronomical Society Oxford University Press 489:3 (2019) 4014-4031

Authors:

RJ Smethurst, BD Simmons, Christopher Lintott, J Shanahan

Abstract:

Recent observations and simulations have revealed the dominance of secular processes over mergers in driving the growth of both supermassive black holes (SMBH) and galaxy evolution. Here we obtain narrowband imaging of AGN powered outflows in a sample of 12 galaxies with disk-dominated morphologies, whose history is assumed to be merger-free. We detect outflows in 10/12 sources in narrow band imaging of the [OIII] 5007 A˚ emission using filters on the Shane-3m telescope. We calculate a mean outflow rate for these AGN of 0.95±0.14 M⊙ yr−1⁠. This exceeds the mean accretion rate of their SMBHs (⁠0.054±0.039 M⊙ yr−1⁠) by a factor of ∼18. Assuming that the galaxy must provide at least enough material to power both the AGN and the outflow, this gives a lower limit on the average inflow rate of ∼1.01±0.14 M⊙ yr−1⁠, a rate which simulations show can be achieved by bars, spiral arms and cold accretion. We compare our disk dominated sample to a sample of nearby AGN with merger dominated histories and show that the black hole accretion rates in our sample are 5 times higher (4.2σ) and the outflow rates are 5 times lower ( 2.6σ). We suggest that this could be a result of the geometry of the smooth, planar inflow in a secular dominated system, which is both spinning up the black hole to increase accretion efficiency and less affected by feedback from the outflow, than in a merger-driven system with chaotic quasi-spherical inflows. This work provides further evidence that secular processes are sufficient to fuel SMBH growth.

Accretion and outflow in V404 Cyg

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:1 (2019) 1356-1365

Authors:

J Casares, T Muñoz-Darias, D Mata Sánchez, PA Charles, MAP Torres, M Armas Padilla, RP Fender, J García-Rojas

SDSS-IV MaNGA: stellar population gradients within barred galaxies

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 488:1 (2019) l6-l11

Authors:

Amelia Fraser-McKelvie, Michael Merrifield, Alfonso Aragón-Salamanca, Thomas Peterken, Karen Masters, Coleman Krawczyk, Brett Andrews, Johan H Knapen, Sandor Kruk, Adam Schaefer, Rebecca Smethurst, Rogério Riffel, Joel Brownstein, Niv Drory

TeraHertz Exploration and Zooming-in for Astrophysics (THEZA): ESA Voyage 2050 White Paper

(2019)

Authors:

Leonid I Gurvits, Zsolt Paragi, Viviana Casasola, John Conway, Jordy Davelaar, Heino Falcke, Rob Fender, Sándor Frey, Christian M Fromm, Cristina García Miró, Michael A Garrett, Marcello Giroletti, Ciriaco Goddi, José-Luis Gómez, Jeffrey van der Gucht, José Carlos Guirado, Zoltán Haiman, Frank Helmich, Elizabeth Humphreys, Violette Impellizzeri, Michael Kramer, Michael Lindqvist, Hendrik Linz, Elisabetta Liuzzo, Andrei P Lobanov, Yosuke Mizuno, Luciano Rezzolla, Freek Roelofs, Eduardo Ros, Kazi LJ Rygl, Tuomas Savolainen, Karl Schuster, Tiziana Venturi, Martina Wiedner, J Anton Zensus