The far-infrared radio correlation at low radio frequency with LOFAR/H-ATLAS

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:4 (2018) 5625-5644

Authors:

SC Read, DJB Smith, G Gürkan, MJ Hardcastle, WL Williams, PN Best, E Brinks, G Calistro-Rivera, KT Chyzy, K Duncan, L Dunne, Matthew Jarvis, Leah K Morabito, I Prandoni, HJA Röttgering, J Sabater, S Viaene

Abstract:

The radio and far-infrared luminosities of star-forming galaxies are tightly correlated over several orders of magnitude; this is known as the far-infrared radio correlation (FIRC). Previous studies have shown that a host of factors conspire to maintain a tight and linear FIRC, despite many models predicting deviation. This discrepancy between expectations and observations is concerning since a linear FIRC underpins the use of radio luminosity as a star-formation rate indicator. Using LOFAR 150MHz , FIRST 1.4GHz , and Herschel  infrared luminosities derived from the new LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic ( 250μm) FIRC at low and high radio frequencies. We use statistical techniques to probe the FIRC for an optically selected sample of 4082 emission-line classified star-forming galaxies as a function of redshift, effective dust temperature, stellar mass, specific star formation rate, and mid-infrared colour (an empirical proxy for specific star formation rate). Although the average FIRC at high radio frequency is consistent with expectations based on a standard power-law radio spectrum, the average correlation at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz⁠, and find that the FIRC varies with stellar mass, dust temperature, and specific star formation rate, whether the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can explain the variation, to within 1σ, seen in the FIRC over mid-infrared colour by a combination of dust temperature, redshift, and stellar mass using a Bayesian partial correlation technique.

SPIRITS 16tn in NGC 3556: A Heavily Obscured and Low-luminosity Supernova at 8.8 Mpc

The Astrophysical Journal American Astronomical Society 863:1 (2018) 20

Authors:

Jacob E Jencson, Mansi M Kasliwal, Scott M Adams, Howard E Bond, Ryan M Lau, Joel Johansson, Assaf Horesh, Kunal P Mooley, Robert Fender, Kishalay De, Dónal O’Sullivan, Frank J Masci, Ann Marie Cody, Nadia Blagorodnova, Ori D Fox, Robert D Gehrz, Peter A Milne, Daniel A Perley, Nathan Smith, Schuyler D Van Dyk

PS18kh: A New Tidal Disruption Event with a Non-Axisymmetric Accretion Disk

(2018)

Authors:

TW-S Holoien, ME Huber, BJ Shappee, M Eracleous, K Auchettl, JS Brown, MA Tucker, KC Chambers, CS Kochanek, KZ Stanek, A Rest, D Bersier, RS Post, G Aldering, KA Ponder, JD Simon, E Kankare, D Dong., G Hallinan, NA Reddy, RL Sanders, MW Topping, J Bulger, TB Lowe, EA Magnier, ASB Schultz, CZ Waters, M Willman, D Wright, DR Young, Subo Dong, JL Prieto, Todd A Thompson, L Denneau, H Flewelling, AN Heinze, SJ Smartt, KW Smith, B Stalder, JL Tonry, H Weiland

Erratum: The SLUGGS Survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ∼4 effective radii

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 478:2 (2018) 1925-1928

Authors:

Sabine Bellstedt, Duncan A Forbes, Aaron J Romanowsky, Rhea-Silvia Remus, Adam RH Stevens, Jean P Brodie, Adriano Poci, Richard McDermid, Adebusola Alabi, Leonie Chevalier, Caitlin Adams, Anna Ferré-Mateu, Asher Wasserman, Viraj Pandya

A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger.

Science (New York, N.Y.) 361:6401 (2018) 482-485

Authors:

S Mattila, M Pérez-Torres, A Efstathiou, P Mimica, M Fraser, E Kankare, A Alberdi, MÁ Aloy, T Heikkilä, PG Jonker, P Lundqvist, I Martí-Vidal, WPS Meikle, C Romero-Cañizales, SJ Smartt, S Tsygankov, E Varenius, A Alonso-Herrero, M Bondi, C Fransson, R Herrero-Illana, T Kangas, R Kotak, N Ramírez-Olivencia, P Väisänen, RJ Beswick, DL Clements, R Greimel, J Harmanen, J Kotilainen, K Nandra, T Reynolds, S Ryder, NA Walton, K Wiik, G Östlin

Abstract:

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.