Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars

ArXiv 2406.04135 (2024)

Authors:

AJ Cooper, Z Wadiasingh

WISDOM Project – XXI. Giant molecular clouds in the central region of the barred spiral galaxy NGC 613: a steep size – linewidth relation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2024) stae1394-stae1394

Authors:

Woorak Choi, Martin Bureau, Lijie Liu, Michele Cappellari, Timothy A Davis, Jindra Gensior, Fu-Heng Liang, Anan Lu, Sanghyuk Moon, Ilaria Ruffa, Thomas G Williams, Aeree Chung

Abstract:

<jats:title>Abstract</jats:title> <jats:p>NGC 613 is a nearby barred spiral galaxy with a nuclear ring. Exploiting high spatial resolution (≈20 pc) Atacama Large Millimeter/sub-millimeter Array 12CO(1-0) observations, we study the giant molecular clouds (GMCs) in the nuclear ring and its vicinity, identifying 158 spatially- and spectrally-resolved GMCs. The GMC sizes (Rc) are comparable to those of the clouds in the Milky Way (MW) disc, but their gas masses, observed linewidths (σobs, los) and gas mass surface densities are larger. The GMC size – linewidth relation ($\sigma _{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{0.77}$) is steeper than that of the clouds of the MW disc and centre, and the GMCs are on average only marginally gravitationally bound (with a mean virial parameter 〈αobs, vir〉 ≈ 1.7). We discuss the possible origins of the steep size – linewidth relation and enhanced observed linewidths of the clouds and suggest that a combination of mechanisms such as stellar feedback, gas accretion and cloud-cloud collisions, as well as the gas inflows driven by the large-scale bar, may play a role.</jats:p>

WISDOM project XX. – Strong shear tearing molecular clouds apart in NGC 524

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) stae1395-stae1395

Authors:

Anan Lu, Daryl Haggard, Martin Bureau, Jindra Gensior, Sarah Jeffreson, Carmelle Robert, Thomas G Williams, Fu-Heng Liang, Woorak Choi, Timothy A Davis, Sara Babic, Hope Boyce, Benjamin Cheung, Laurent Drissen, Jacob S Elford, Lijie Liu, Thomas Martin, Carter Rhea, Laurie Rousseau-Nepton, Ilaria Ruffa

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>Early-type galaxies (ETGs) are known to harbour dense spheroids of stars but scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. We study here the ETG NGC 524, with strong shear suspected to result in a smooth molecular gas disc and low star-formation efficiency (SFE). We present new spatially resolved observations of the 12CO(2-1)-emitting cold molecular gas from the Atacama Large Millimeter/sub-millimeter Array (ALMA) and of the warm ionized-gas emission lines from SITELLE at the Canada–France–Hawaii Telescope. Although constrained by the resolution of the ALMA observations (≈37 pc), we identify only 52 GMCs with radii ranging from 30 to 140 pc, a low mean molecular gas mass surface density 〈Σgas〉 ≈ 125 M⊙ pc−2 and a high mean virial parameter 〈αobs, vir〉 ≈ 5.3. We measure spatially resolved molecular gas depletion times (τdep ≡ 1/SFE) with a spatial resolution of ≈100 pc within a galactocentric distance of 1.5 kpc. The global depletion time is ≈2.0 Gyr but τdep increases towards the galaxy centre, with a maximum τdep, max ≈ 5.2 Gyr. However, no pure H ii region is identified in NGC 524 using ionized-gas emission-line ratio diagnostics, so the τdep inferred are in fact lower limits. Measuring the GMC properties and dynamical states, we conclude that shear is the dominant mechanism shaping the molecular gas properties and regulating SF in NGC 524. This is supported by analogous analyses of the GMCs in a simulated ETG similar to NGC 524.</jats:p>

WISDOM project XX -- Strong shear tearing molecular clouds apart in NGC 524

(2024)

Authors:

Anan Lu, Daryl Haggard, Martin Bureau, Jindra Gensior, Sarah Jeffreson, Carmelle Robert, Thomas G Williams, Fu-Heng Liang, Woorak Choi, Timothy A Davis, Sara Babic, Hope Boyce, Benjamin Cheung, Laurent Drissen, Jacob S Elford, Lijie Liu, Thomas Martin, Carter Rhea, Laurie Rousseau-Nepton, Ilaria Ruffa

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background (Corrigendum)

Astronomy & Astrophysics EDP Sciences 686 (2024) c2

Authors:

SJ Nakoneczny, D Alonso, M Bilicki, DJ Schwarz, CL Hale, A Pollo, C Heneka, P Tiwari, J Zheng, M Brüggen, MJ Jarvis, TW Shimwell