Nebular spectra of pair-instability supernovae
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 455:3 (2016) 3207-3229
On the depletion and accretion timescales of cold gas in local early-type galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 457:1 (2016) 272-280
Abstract:
We consider what can be learnt about the processes of gas accretion and depletion from the kinematic misalignment between the cold/warm gas and stars in local early-type galaxies. Using simple analytic arguments and a toy model of the processes involved, we show that the lack of objects with counter-rotating gas reservoirs strongly constrains the relaxation, depletion and accretion time-scales of gas in early-type galaxies. Standard values of the accretion rate, star-formation efficiency and relaxation rate are not simultaneously consistent with the observed distribution of kinematic misalignments. To reproduce that distribution, both fast gas depletion (tdep ≲ 108 yr; e.g. more efficient star formation) and fast gas destruction (e.g. by active galactic nucleus feedback) can be invoked, but both also require a high rate of gas-rich mergers (>1 Gyr−1). Alternatively, the relaxation of misaligned material could happen over very long time-scales (≃100 dynamical times or ≈1–5 Gyr). We explore the various physical processes that could lead to fast gas depletion and/or slow gas relaxation, and discuss the prospects of using kinematic misalignments to probe gas-rich accretion processes in the era of large integral-field spectroscopic surveys.KROSS: Mapping the Ha emission across the star-formation sequence at z~1
(2016)
A mature galaxy cluster at z = 1.58 around the radio galaxy 7C 1753+6311
Astrophysical Journal American Astronomical Society 816:2 (2016) ARTN 83
Abstract:
We report on the discovery of a z = 1.58 mature cluster around the high-redshift radio galaxy 7C 1753+6311, first identified in the Clusters Around Radio-loud active galactic nuclei survey. Two-thirds of the excess galaxies within the central 1 Mpc lie on a red sequence with a color that is consistent with an average formation redshift of zf ~ 3. We show that 80 ± 6% of the red sequence galaxies in the cluster core are quiescent, while the remaining 20% are red due to dusty star formation. We demonstrate that the cluster has an enhanced quiescent galaxy fraction that is three times that of the control field. We also show that this enhancement is mass dependent: 91 ± 9% of the ${M}_{*}\gt {10}^{10.5}$M⊙ cluster galaxies are quiescent, compared to only 36 ± 2% of field galaxies, whereas the fraction of quiescent galaxies with lower masses is the same in the cluster and field environments. The presence of a dense core and a well-formed, quiescent red sequence suggest that this is a mature cluster. This means that distant radio galaxies do not solely reside in young, uncollapsed protoclusters, rather they can be found in clusters in a wide range of evolutionary states.The KMOS Redshift One Spectroscopic Survey (KROSS): Dynamical properties, gas and dark matter fractions of typical z~1 star-forming galaxies
(2016)