Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

Monthly Notices of the Royal Astronomical Society Oxford University Press 464:4 (2016) 4176-4203

Authors:

Kyle W Willett, Melanie A Galloway, Steven P Bamford, Christopher Lintott, Karen L Masters, Claudia Scarlata, BD Simmons, Melanie Beck, Carolin N Cardamone, Edmond Cheung, Edward M Edmondson, Lucy F Fortson, Roger L Griffith, Boris Haeussler, Anna Han, Ross Hart, Thomas Melvin, Michael Parrish, Kevin Schawinski, RJ Smethurst, Arfon M Smith

Abstract:

We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour composite images. Images in GZH were selected from various publicly-released Hubble Space Telescope Legacy programs conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to $z \sim 1$. The bulk of the sample is selected to have $m_{I814W} < 23.5$,but goes as faint as $m_{I814W} < 26.8$ for deep images combined over 5 epochs. The median redshift of the combined samples is $z = 0.9 \pm 0.6$, with a tail extending out to $z \sim 4$. The GZH morphological data include measurements of both bulge- and disk-dominated galaxies, details on spiral disk structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially-redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119,849 galaxies, providing the largest dataset to date suitable for large-scale studies of galaxy evolution out to $z \sim 1$.

LADUMA: looking at the distant universe with the MeerKAT array

Proceedings of Science Part F138095 (2016)

Authors:

SL Blyth, AJ Baker, BW Holwerda, BA Bassett, MA Bershady, A Bouchard, FH Briggs, B Catinella, L Chemin, SM Crawford, CM Cress, D Cunnama, JK Darling, R Davé, RP Deane, WJG de Blok, EC Elson, A Faltenbacher, S February, X Fernández, BS Frank, E Gawiser, PA Henning, KM Hess, I Heywood, JP Hughes, MJ Jarvis, SJ Kannappan, NS Katz, D Kereš, HR Klöckner, RC Kraan-Korteweg, P Lah, MD Lehnert, AK Leroy, M Lochner, N Maddox, S Makhathini, GR Meurer, MJ Meyer, K Moodley, R Morganti, D Obreschkow, SH Oh, TA Oosterloo, DJ Pisano, A Popping, G Popping, S Ravindranath, E Schinnerer, AC Schröder, K Sheth, R Skelton, OM Smirnov, M Smith, RS Somerville, R Srianand, L Staveley-Smith, IM Stewart, M Vaccari, P Väisänen, KJ van der Heyden, W van Driel, MAW Verheijen, F Walter, EM Wilcots, TB Williams, PA Woudt, JF Wu, MA Zwaan, JTL Zwart, S Rawlings

Abstract:

© Copyright owned by the author(s). The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out.

LADUMA: looking at the distant universe with the MeerKAT array

Proceedings of Science (2016)

Authors:

SL Blyth, AJ Baker, BW Holwerda, BA Bassett, MA Bershady, A Bouchard, FH Briggs, B Catinella, L Chemin, SM Crawford, CM Cress, D Cunnama, JK Darling, R Davé, RP Deane, WJG de Blok, EC Elson, A Faltenbacher, S February, X Fernández, BS Frank, E Gawiser, PA Henning, KM Hess, I Heywood, JP Hughes, MJ Jarvis, SJ Kannappan, NS Katz, D Kereš, HR Klöckner, RC Kraan-Korteweg, P Lah, MD Lehnert, AK Leroy, M Lochner, N Maddox, S Makhathini, GR Meurer, MJ Meyer, K Moodley, R Morganti, D Obreschkow, SH Oh, TA Oosterloo, DJ Pisano, A Popping, G Popping, S Ravindranath, E Schinnerer, AC Schröder, K Sheth, R Skelton, OM Smirnov, M Smith, RS Somerville, R Srianand, L Staveley-Smith, IM Stewart, M Vaccari, P Väisänen, KJ van der Heyden, W van Driel, MAW Verheijen, F Walter, EM Wilcots, TB Williams, PA Woudt, JF Wu, MA Zwaan, JTL Zwart, S Rawlings

Abstract:

© Copyright owned by the author(s). The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out.

LADUMA: looking at the distant universe with the MeerKAT array

Proceedings of Science (2016)

Authors:

SL Blyth, AJ Baker, BW Holwerda, BA Bassett, MA Bershady, A Bouchard, FH Briggs, B Catinella, L Chemin, SM Crawford, CM Cress, D Cunnama, JK Darling, R Davé, RP Deane, WJG de Blok, EC Elson, A Faltenbacher, S February, X Fernández, BS Frank, E Gawiser, PA Henning, KM Hess, I Heywood, JP Hughes, MJ Jarvis, SJ Kannappan, NS Katz, D Kereš, HR Klöckner, RC Kraan-Korteweg, P Lah, MD Lehnert, AK Leroy, M Lochner, N Maddox, S Makhathini, GR Meurer, MJ Meyer, K Moodley, R Morganti, D Obreschkow, SH Oh, TA Oosterloo, DJ Pisano, A Popping, G Popping, S Ravindranath, E Schinnerer, AC Schröder, K Sheth, R Skelton, OM Smirnov, M Smith, RS Somerville, R Srianand, L Staveley-Smith, IM Stewart, M Vaccari, P Väisänen, KJ van der Heyden, W van Driel, MAW Verheijen, F Walter, EM Wilcots, TB Williams, PA Woudt, JF Wu, MA Zwaan, JTL Zwart, S Rawlings

Abstract:

The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out.

LOFAR 150-MHz observations of the Boötes field: catalogue and source counts

Monthly Notices of the Royal Astronomical Society Oxford University Press 430:3 (2016) 2385-2412

Authors:

WL Williams, RJ van Weeren, HJA Röttgering, P Best, TJ Dijkema, FD Gasperin, MJ Hardcastle, G Heald, I Prandoni, J Sabater, TW Shimwell, C Tasse, IMV Bemmel, M Brüggen, G Brunetti, JE Conway, T Enßlin, D Engels, H Falcke, C Ferrari, M Haverkorn, N Jackson, Matthew Jarvis, AD Kapinska, EK Mahony, GK Miley, LK Morabito, R Morganti, E Orrú, E Retana-Montenegro, SS Sridhar, MC Toribio, GJ White, MW Wise, JTL Zwart

Abstract:

We present the first wide area (19 deg$^2$), deep ($\approx120-150$ {\mu}Jy beam$^{-1}$), high resolution ($5.6 \times 7.4$ arcsec) LOFAR High Band Antenna image of the Bo\"otes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6276 sources detected over an area of $19$\,deg$^2$, with a peak flux density threshold of $5\sigma$. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150 MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.