Spectroscopic Observations of SN 2012fr: A Luminous Normal Type Ia Supernova with Early High Velocity Features and Late Velocity Plateau

(2013)

Authors:

MJ Childress, RA Scalzo, SA Sim, BE Tucker, F Yuan, BP Schmidt, SB Cenko, JM Silverman, C Contreras, EY Hsiao, M Phillips, N Morrell, SW Jha, C McCully, AV Filippenko, JP Anderson, S Benetti, F Bufano, T de Jaeger, F Forster, A Gal-Yam, L Le Guillou, K Maguire, J Maund, PA Mazzali, G Pignata, S Smartt, J Spyromilio, M Sullivan, F Taddia, S Valenti, DDR Bayliss, M Bessell, GA Blanc, DJ Carson, KI Clubb, C de Burgh-Day, TD Desjardins, JJ Fang, OD Fox, EL Gates, I-T Ho, S Keller, PL Kelly, C Lidman, NS Loaring, JR Mould, M Owers, S Ozbilgen, L Pei, T Pickering, MB Pracy, JA Rich, BE Schaefer, N Scott, M Stritzinger, FPA Vogt, G Zhou

Constraining the bright-end of the UV luminosity function for z ≈ 7-9 galaxies: Results from CANDELS/GOODS-South

Monthly Notices of the Royal Astronomical Society 429:1 (2013) 150-158

Authors:

S Lorenzoni, AJ Bunker, SM Wilkins, J Caruana, ER Stanway, MJ Jarvis

Abstract:

The recent Hubble Space Telescope near-infrared imaging with the Wide-Field Camera #3 (WFC 3) of the Great Observatories Origins Deep Survey South (GOODS-S) field in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) programme covering nearly 100 arcmin2, along with already existing Advanced Camera for Surveys optical data, makes possible the search for bright galaxy candidates at redshift z≈7-9 using the Lyman break technique. We present the first analysis of z'-drop z≈7 candidate galaxies in this area, finding 19 objects. We also analyse Y-drops at z≈8, trebling the number of bright (HAB < 27 mag) Y-drops from our previous work, and compare our results with those of other groups based on the same data. The bright high-redshift galaxy candidates we find serve to better constrain the bright end of the luminosity function at those redshift, and may also be more amenable to spectroscopic confirmation than the fainter ones presented in various previous work on the smaller fields (the Hubble Ultra Deep Field and the WFC 3 Early Release Science observations).We also look at the agreement with previous luminosity functions derived from WFC3 drop-out counts, finding a generally good agreement, except for the luminosity function of Yan et al. at z≈8, which is strongly ruled out. ©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Jet spectral breaks in black hole x-ray binaries

Monthly Notices of the Royal Astronomical Society 429:1 (2013) 815-832

Authors:

DM Russell, S Markoff, P Casella, AG Cantrell, R Chatterjee, RP Fender, E Gallo, P Gandhi, J Homan, D Maitra, JCA Miller-Jones, K O'Brien, T Shahbaz

Abstract:

In X-ray binaries, compact jets are known to commonly radiate at radio to infrared frequencies, whereas at optical to -ray energies, the contribution of the jet is debated. The total luminosity, and hence power of the jet, is critically dependent on the position of the break in its spectrum, between optically thick (self-absorbed) and optically thin synchrotron emission. This break, or turnover, has been reported in just one black hole X-ray binary (BHXB) thus far, GX 339-4, and inferred via spectral fitting in two others, A0620-00 and Cyg X-1. Here, we collect a wealth of multi-wavelength data from the outbursts of BHXBs during hard X-ray states, in order to search for jet breaks as yet unidentified in their spectral energy distributions. In particular, we report the direct detection of the jet break in the spectrum of V404 Cyg during its 1989 outburst, at b = (1.8 ± 0.3) × 1014 Hz (1.7 ± 0.2 μm). We increase the number of BHXBs with measured jet breaks from three to eight. Jet breaks are found at frequencies spanning more than two orders of magnitude, from b = (4.5 ± 0.8) × 1012 Hz for XTE J1118+480 during its 2005 outburst, to b > 4.7 × 1014 Hz for V4641 Sgr in outburst. A positive correlation between jet break frequency and luminosity is expected theoretically; b L ~0.5 ,jet if other parameters are constant. With constraints on the jet break in a total of 12 BHXBs including two quiescent systems, we find a large range of jet break frequencies at similar luminosities and no obvious global relation (but such a relation cannot be ruled out for individual sources). We speculate that different magnetic field strengths and/or different radii of the acceleration zone in the inner regions of the jet are likely to be responsible for the observed scatter between sources. There is evidence that the high-energy cooling break in the jet spectrum shifts from UV energies at LX ~ 10-8LEdd (implying the jet may dominate the X-ray emission in quiescence) to X-ray energies at ~10-3LEdd. Finally, we find that the jet break luminosity scales as L,jet L0.56±0.05 X (very similar to the radio-X-ray correlation), and radio-faint BHXBs have fainter jet breaks. In quiescence the jet break luminosity exceeds the X-ray luminosity. © 2012 The Authors.

The atlas3d project - xiv. the extent and kinematics of the molecular gas in early-type galaxies

Monthly Notices of the Royal Astronomical Society 429:1 (2013) 534-555

Authors:

TA Davis, K Alatalo, M Bureau, M Cappellari, N Scott, LM Young, L Blitz, A Crocker, E Bayet, M Bois, F Bournaud, RL Davies, PT De Zeeuw, PA Duc, E Emsellem, S Khochfar, D Krajnovíc, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, P Serra, AM Weijmans

Abstract:

We use interferometric 12CO(1-0) observations to compare and contrast the extent, surface brightness profiles and kinematics of the molecular gas in CO-rich ATLAS3D early-type galaxies (ETGs) and spiral galaxies. We find that the molecular gas extent is smaller in absolute terms in ETGs than in late-type galaxies, but that the size distributions are similar once scaled by the galaxies optical/stellar characteristic scalelengths. Amongst ETGs, we find that the extent of the gas is independent of its kinematic misalignment (with respect to the stars), but does depend on the environment, with Virgo cluster ETGs having less extended molecular gas reservoirs, further emphasizing that cluster ETGs follow different evolutionary pathways from those in the field. Approximately half of ETGs have molecular gas surface brightness profiles that follow the stellar light profile. These systems often have relaxed gas out to large radii, suggesting they are unlikely to have had recent merger/accretion events. A third of the sample galaxies show molecular gas surface brightness profiles that fall off slower than the light, and sometimes show a truncation. These galaxies often have a low mass, and eitherhave disturbed molecular gas or are in the Virgo cluster, suggesting that recent mergers, ram pressure stripping and/or the presence of hot gas can compress/truncate the gas. The remaining galaxies have rings, or composite profiles, that we argue can be caused by the effects of bars. We investigated the kinematics of the molecular gas using position-velocity diagrams, and compared the observed kinematics with dynamical model predictions, and the observed stellar and ionized gas velocities. We confirm that the molecular gas reaches beyond the turnover of the circular velocity curve in~70 per cent of our CO-rich ATLAS3D ETGs, validating previous work on the CO Tully-Fisher relation. In general we find that in most galaxies the molecular gas is dynamically cold, and the observed CO rotation matches well model predictions of the circular velocity. In the galaxies with the largest molecular masses, dust obscuration and/or population gradients can cause model predictions of the circular velocity to disagree with observations of the molecular gas rotation; however, these effects are confined to the most star forming systems. Bars and non-equilibrium conditions can also make the gas deviate from circular orbits. In both these cases, one expects the model circular velocity to be higher than the observed CO velocity, in agreement with our observations. Molecular gas is a better direct tracer of the circular velocity than the ionized gas, justifying its use as a kinematic tracer for Tully-Fisher and similar analyses.

Differential Frequency-dependent Delay from the Pulsar Magnetosphere

(2013)

Authors:

TE Hassall, BW Stappers, P Weltevrede, JWT Hessels, A Alexov, T Coenen, A Karastergiou, M Kramer, EF Keane, VI Kondratiev, J van Leeuwen, A Noutsos, M Pilia, M Serylak, C Sobey, K Zagkouris, R Fender, ME Bell, J Broderick, J Eisloffel, H Falcke, J-M Griessmeier, M Kuniyoshi, JCA Miller-Jones, MW Wise, O Wucknitz, P Zarka, A Asgekar, F Batejat, MJ Bentum, G Bernardi, P Best, A Bonafede, F Breitling, M Bruggen, HR Butcher, B Ciardi, F de Gasperin, J-P de Reijer, S Duscha, RA Fallows, C Ferrari, W Frieswijk, MA Garrett, AW Gunst, G Heald, M Hoeft, E Juette, P Maat, JP McKean, MJ Norden, M Pandey-Pommier, R Pizzo, AG Polatidis, W Reich, H Rottgering, J Sluman, Y Tang, C Tasse, R Vermeulen, RJ van Weeren, SJ Wijnholds, S Yatawatta