Multiwavelength campaign on Mrk 509: XI. Reverberation of the Fe K α line

Astronomy and Astrophysics 549 (2013)

Authors:

G Ponti, M Cappi, E Costantini, S Bianchi, JS Kaastra, B De Marco, RP Fender, PO Petrucci, GA Kriss, KC Steenbrugge, N Arav, E Behar, G Branduardi-Raymont, M Dadina, J Ebrero, P Lubiński, M Mehdipour, S Paltani, C Pinto, F Tombesi

Abstract:

Context.We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (∼60 ks each) about once every 4 days, and includes a reanalysis of previous XMM-Newton and Chandra observations. Aims.We aim at understanding the origin and location of the Fe K emission and absorption regions. Methods.We combine the results of time-resolved spectral analysis on both short and long time-scales including model-independent rms spectra. Results.Mrk 509 shows a clear (EW = 58±4 eV) neutral Fe Ka emission line that can be decomposed into a narrow (s = 0.027 keV) component (found in the Chandra HETG data) plus a resolved (s = 0.22 keV) component.We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3-10 keV flux variations on time scales of years down to a few days. The Fe Ka reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Ka component is located within a few light days to a week (r ≲ 103 rg) from the black hole (BH). The lack of a redshifted wing in the line poses a lower limit of =40 rg for its distance from the BH. The Fe Ka could thus be emitted from the inner regions of the BLR, i.e. within the ∼80 light days indicated by the Hß line measurements. In addition to these two neutral Fe Ka components, we confirm the detection of weak (EW ∼ 8-20 eV) ionised Fe K emission. This ionised line can be modelled with either a blend of two narrow Fe xxv and Fe xxvi emission lines (possibly produced by scattering from distant material) or with a single relativistic line produced, in an ionised disc, down to a few rg from the BH. In the latter interpretation, the presence of an ionised standard a-disc, down to a few rg, is consistent with the source high Eddington ratio. Finally, we observe a weakening/disappearing of the mediumand high-velocity high-ionisation Fe K wind features found in previous XMM-Newton observations. Conclusions. This campaign has made the first reverberation measurement of the resolved component of the Fe Ka line possible, from which we can infer a location for the bulk of its emission at a distance of r ∼ 40-1000 rg from the BH. © 2012 ESO.

Radio continuum surveys with square kilometre array pathfinders

Publications of the Astronomical Society of Australia 30:1 (2013)

Authors:

RP Norris, J Afonso, D Bacon, R Beck, M Bell, RJ Beswick, P Best, S Bhatnagar, A Bonafede, G Brunetti, T Budavári, R Cassano, JJ Condon, C Cress, A Dabbech, I Feain, R Fender, C Ferrari, BM Gaensler, G Giovannini, M Haverkorn, G Heald, K Van Der Heyden, AM Hopkins, M Jarvis, M Johnston-Hollitt, R Kothes, H Van Langevelde, J Lazio, MY Mao, A Martínez-Sansigre, D Mary, K McAlpine, E Middelberg, E Murphy, P Padovani, Z Paragi, I Prandoni, A Raccanelli, E Rigby, IG Roseboom, H Röttgering, J Sabater, M Salvato, AMM Scaife, R Schilizzi, N Seymour, DJB Smith, G Umana, GB Zhao, PC Zinn

Abstract:

In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return. © 2013 Astronomical Society of Australia.

The 'universal' radio/X-ray flux correlation: The case study of the black hole GX 339-4

Monthly Notices of the Royal Astronomical Society 428:3 (2013) 2500-2515

Authors:

S Corbel, M Coriat, C Brocksopp, AK Tzioumis, RP Fender, JA Tomsick, MM Buxton, CD Bailyn

Abstract:

The existing radio and X-ray flux correlation for Galactic black holes in the hard and quiescent states relies on a sample which is mostly dominated by two sources (GX 339-4 and V404 Cyg) observed in a single outburst. In this paper, we report on a series of radio and X-ray observations of the recurrent black hole GX 339-4 with the Australia Telescope Compact Array, the Rossi X-ray Timing Explorer and the Swift satellites. With our new long-term campaign, we now have a total of 88 quasi-simultaneous radio and X-ray observations of GX 339-4 during its hard state, covering a total of seven outbursts over a 15-yr period. Our new measurements represent the largest sample for a stellar mass black hole, without any bias from distance uncertainties, over the largest flux variations and down to a level that could be close to quiescence, making GX 339-4 the reference source for comparison with other accreting sources (black holes, neutrons stars, white dwarfs and active galactic nuclei). Our results demonstrate a very strong and stable coupling between radio and X-ray emission, despite several outbursts of different nature and separated by a period of quiescence. The radio and X-ray luminosity correlation of the form LX α L0.62±0.01Rad confirms the non-linear coupling between the jet and the inner accretion flow powers and better defines the standard correlation track in the radio-X-ray diagram for stellar mass black holes. We further note epochs of deviations from the fit that significantly exceed the measurement uncertainties, especially during the time of formation and destruction of the self-absorbed compact jets. The jet luminosity could appear brighter (up to a factor of 2) during the decay compared to the rise for a given X-ray luminosity, possibly related to the compact jets. We furthermore connect the radio/X-ray measurements to the near-infrared/X-ray empirical correlation in GX 339-4, further demonstrating a coupled correlation between these three frequency ranges. The level of radio emission would then be tied to the near-infrared emission, possibly by the evolution of the broad-band properties of the jets. We further incorporated our new data of GX 339-4 in a more global study of black hole candidates strongly supporting a scale invariance in the jet-accretion coupling of accreting black holes, and confirms the existence of two populations of sources in the radio/X-ray diagram. © 2012 The Authors.

The ATLAS3D project - XVIII. CARMA CO imaging survey of early-type galaxies

Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1796-1844

Authors:

K Alatalo, TA Davis, M Bureau, LM Young, L Blitz, AF Crocker, E Bayet, M Bois, F Bournaud, M Cappellari, RL Davies, PT De Zeeuw, PA Duc, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, R Morganti, RM McDermid, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, AM Weijmans

Abstract:

We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12CO(1-0) integrated flux of 18.5 Jy km s-1,1 and it represents the largest, best studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g - r colour image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50 per cent), rings (15 per cent), bars+rings (10 per cent), spiral arms (5 per cent) and mildly (12.5 per cent) and strongly (7.5 per cent) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limit to the total accreted molecular gas mass across the sample of 2.48 × 1010Mȯ, or approximately 8.3 × 108Mȯ per minor merger within the sample, consistent with minor merger stellar mass ratios. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

The ATLAS3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies

Monthly Notices of the Royal Astronomical Society 432:3 (2013) 1742-1767

Authors:

E Bayet, M Bureau, TA Davis, LM Young, AF Crocker, K Alatalo, L Blitz, M Bois, F Bournaud, M Cappellari, RL Davies, PT de Zeeuw, PA Duc, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, AM Weijmans

Abstract:

We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated 12CO (1-0, 2-1), 13CO (1-0, 2-1), HCN (1-0) and HCO+ (1-0) observations and new 12 CO (3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H2 volume density and column density of the emitting gas in a significant sample of ETGs, using a non-local thermodynamical equilibrium theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO+ lines, the two sets of lines are treated separately. For most of the molecular gas-rich ETGs studied here, the CO transitions can be reproduced with kinetic temperatures of 10-20 K, H2 volume densities of 103-4 cm-3 and CO column densities of 1018-20 cm-2. The physical conditions corresponding to the HCN and HCO+ gas component have large uncertainties and must be considered as indicative only. We also compare for the first time the predicted CO spectral line energy distributions and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of theMilky Way, hence the star formation activity driving these conditions is likely of a similar strength and nature. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid-J CO lines [such as the 12CO (6-5) line] are particularly useful. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.