The ATLAS3D project - VII. A new look at the morphology of nearby galaxies: The kinematic morphology-density relation

Monthly Notices of the Royal Astronomical Society 416:3 (2011) 1680-1696

Authors:

M Cappellari, E Emsellem, D Krajnović, RM McDermid, P Serra, K Alatalo, L Blitz, M Bois, F Bournaud, M Bureau, RL Davies, TA Davis, PT de Zeeuw, S Khochfar, H Kuntschner, PY Lablanche, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, AM Weijmans, LM Young

Abstract:

In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS3D sample of 260 early-type galaxies (ETGs). In Papers II and III we classified the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection effects, and we separated them into fast and slow rotators. Here we look at galaxy morphology and note that the edge-on fast rotators generally are lenticular galaxies. They appear like spiral galaxies with the gas and dust removed, and in some cases are flat ellipticals (E5 or flatter) with discy isophotes. Fast rotators are often barred and span the same full range of bulge fractions as spiral galaxies. The slow rotators are rounder (E4 or rounder, except for counter-rotating discs) and are generally consistent with being genuine, namely spheroidal-like, elliptical galaxies. We propose a revision to the tuning-fork diagram by Hubble as it gives a misleading description of ETGs by ignoring the large variation in the bulge sizes of fast rotators. Motivated by the fact that only one third (34 per cent) of the ellipticals in our sample are slow rotators, we study for the first time the kinematic morphology-density T-Σ relation using fast and slow rotators to replace lenticulars and ellipticals. We find that our relation is cleaner than using classic morphology. Slow rotators are nearly absent at the lowest density environments [per cent] and generally constitute a small fraction [f(SR) ≈ 4 per cent] of the total galaxy population in the relatively low-density environments explored by our survey, with the exception of the densest core of the Virgo cluster [f(SR) ≈ 20 per cent]. This contrasts with the classic studies that invariably find significant fractions of (misclassified) ellipticals down to the lowest environmental densities. We find a clean log-linear relation between the fraction f(Sp) of spiral galaxies and the local galaxy surface density Σ3, within a cylinder enclosing the three nearest galaxies. This holds for nearly four orders of magnitude in the surface density down to Σ3≈ 0.01Mpc-2, with f(Sp) decreasing by 10 per cent per dex in Σ3, while f(FR) correspondingly increases. The existence of a smooth kinematic T-Σ relation in the field excludes processes related to the cluster environment, like e.g. ram-pressure stripping, as main contributors to the apparent conversion of spirals into fast rotators in low-density environments. It shows that the segregation is driven by local effects at the small-group scale. This is supported by the relation becoming shallower when using a surface density estimator Σ10 with a cluster scale. Only at the largest densities in the Virgo core does the f(Sp) relation break down and steepen sharply, while the fraction of slow rotators starts to significantly increase. This suggests that a different mechanism is at work there, possibly related to the stripping of the gas from spirals by the hot intergalactic medium in the cluster core and the corresponding lack of cold accretion. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

The SAURON project - XVIII. The integrated UV-line-strength relations of early-type galaxies

Monthly Notices of the Royal Astronomical Society 414:3 (2011) 1887-1902

Authors:

M Bureau, H Jeong, SK Yi, K Schawinski, RCW Houghton, RL Davies, R Bacon, M Cappellari, PT de Zeeuw, E Emsellem, J Falcón-Barroso, D Krajnović, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, YJ Sohn, D Thomas, RCE van den Bosch, G van de Ven

Abstract:

Using far-ultraviolet (FUV) and near-ultraviolet (NUV) photometry from guest investigator programmes on the Galaxy Evolution Explorer (GALEX) satellite, optical photometry from the MDM Observatory and optical integral-field spectroscopy from SAURON, we explore the UV-line-strength relations of the 48 nearby early-type galaxies in the SAURON sample. Identical apertures are used for all quantities, avoiding aperture mismatch. We show that galaxies with purely old stellar populations show well-defined correlations of the integrated FUV -V and FUV - NUV colours with the integrated Mg b and Hβ absorption line-strength indices, strongest for FUV - NUV. Correlations with the NUV -V colour, Fe5015 index and stellar velocity dispersion σ are much weaker. These correlations put stringent constraints on the origin of the UV-upturn phenomenon in early-type galaxies and highlight its dependence on age and metallicity. In particular, despite recent debate, we recover the negative correlation between FUV -V colour and Mg line strength originally publicized by Burstein et al., which we refer to as the 'Burstein relation', suggesting a positive dependence of the UV upturn on metallicity. We argue that the scatter in the correlations is real and present mild evidence that a strong UV excess is preferentially present in slow-rotating galaxies. We also demonstrate that most outliers in the correlations are galaxies with current or recent star formation, some at very low levels. We believe that this sensitivity to weak star formation, afforded by the deep and varied data available for the SAURON sample, explains why our results are occasionally at odds with other recent but shallower surveys. This is supported by the analysis of a large, carefully crafted sample of more distant early-type galaxies from the Sloan Digital Sky Survey (SDSS), more easily comparable with current and future large surveys. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

The evolution of the Fundamental Plane of radio galaxies from z~ 0.5 to the present day

Monthly Notices of the Royal Astronomical Society 410:2 (2011) 1360-1376

Authors:

PD Herbert, MJ Jarvis, CJ Willott, RJ McLure, E Mitchell, S Rawlings, GJ Hill, JS Dunlop

Abstract:

We present deep spectroscopic data for a 24-object subsample of our full 41-object z~ 0.5 radio galaxy sample in order to investigate the evolution of the Fundamental Plane of radio galaxies. We find that the low-luminosity, Fanaroff-Riley type I (FRI), radio galaxies in our sample are consistent with the local Fundamental Plane of radio galaxies defined by Bettoni et al. when corrected for simple passive evolution of their stellar populations. However, we find that the higher luminosity, Fanaroff-Riley type II (FRII), radio galaxies are inconsistent with the local Fundamental Plane if only passive evolution is considered, and find evidence for a rotation in the Fundamental Plane at z~ 0.5 when compared with the local relation. We show that neither passive evolution, nor a mass-dependent evolution in the mass-to-light ratio, nor an evolution in the size of the host galaxies can, by themselves, plausibly explain the observed tilt. However, we suggest that some combination of all three effects, with size evolution as the dominant factor, may be sufficient to explain the difference between the planes.We also find evidence for a correlation between host galaxy velocity dispersion and radio luminosity at the 97 per cent significance level within our subsample, although further observations are required in order to determine whether this is different for the FRI and FRII radio sources. Assuming that the MBH-σ relation still holds at z~ 0.5, this implies that radio luminosity scales with black hole mass, in agreement with previous studies. © 2010 The Authors. Journal compilation © 2010 RAS.

The planetary nebulae population in the central regions of M32: The SAURON view

Monthly Notices of the Royal Astronomical Society 415:3 (2011) 2832-2843

Authors:

M Sarzi, GA Mamon, M Cappellari, E Emsellem, R Bacon, RL Davies, P Tim de Zeeuw

Abstract:

Extragalactic planetary nebulae (PNe) are not only useful as distance signposts or as tracers of the dark matter content of their host galaxies, but constitute also good indicators of the main properties of their parent stellar populations. Yet, so far, the properties of PNe in the optical regions of galaxies where stellar population gradients can be more extreme have remained largely unexplored, mainly because the detection of PNe with narrow-band imaging or slitless spectroscopy is considerably hampered by the presence of a strong stellar background. Integral field spectroscopy (IFS) can overcome this limitation, and here we present a study of the PN population in the nearby compact elliptical M32. Using SAURON data taken with just two 10-min-long pointings we have doubled the number of known PNe within the effective radius of M32, detecting PNe five times fainter than previously found in narrow-band images that collected nearly the same number of photons. We have carefully assessed the incompleteness limit of our survey, and accounting for it across the entire range of luminosity values spanned by our detected PNe, we could conclude despite having at our disposal only 15 sources that the central PNe population of M32 is consistent with the generally adopted shape for the PNe Luminosity Function and its typical normalization observed in early-type galaxies. Furthermore, owing to the proximity of M32 and to ultraviolet images taken with the Hubble Space Telescope, we could identify the most likely candidates for the central star of a subset of our detected PNe and conclude that these stars are affected by substantial amounts of circumstellar dust extinction, a finding that could reconcile the intriguing discrepancy previously reported in M32 between the model predictions and the observations for the later stages of stellar evolution. Considering the modest time investment on a 4-m-class telescope that delivered these results, this study illustrates the potential of future IFS investigations for the central PNe population of early-type galaxies, either with existing SAURON data for many more, albeit more distant, objects, or from campaigns that will use the future generations of integral field spectrographs that will be mounted on 8-m-class telescopes, such as MUSE on the Very Large Telescope. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

X-ray and radio variability in the low-luminosity active galactic nucleus NGC 7213

Monthly Notices of the Royal Astronomical Society 411:1 (2011) 402-410

Authors:

ME Bell, T Tzioumis, P Uttley, RP Fender, P Arévalo, E Breedt, I McHardy, DE Calvelo, O Jamil, E Körding

Abstract:

We present the results of a ∼3yr campaign to monitor the low-luminosity active galactic nucleus (LLAGN) NGC 7213 in the radio (4.8 and 8.4GHz) and X-ray bands (2-10keV). With a reported X-ray Eddington ratio of 7 × 10-4LEdd, NGC 7213 can be considered to be comparable to a hard-state black hole X-ray binary. We show that a weak correlation exists between the X-ray and radio light curves. We use the cross-correlation function to calculate a global time-lag between events in the X-ray and radio bands to be 24 ± 12 d lag (8.4 GHz radio lagging X-ray) and 40 ± 13d lag (4.8GHz radio lagging X-ray), respectively. The radio-radio light curves are extremely well correlated with a lag of 20.5 ± 12.9d (4.8GHz lagging 8.4 GHz). We explore the previously established scaling relationship between core radio and X-ray luminosities and black hole mass LR∝M0.6-0.8L0.6X, known as the 'Fundamental Plane of black hole activity', and show that NGC 7213 lies very close to the best-fitting 'global' correlation for the plane as one of the most-luminous LLAGNs. With a large number of quasi-simultaneous radio and X-ray observations, we explore for the first time the variations of a single AGN with respect to the Fundamental Plane. Although the average radio and X-ray luminosities for NGC 7213 are in good agreement with the Plane, we show that there is intrinsic scatter with respect to the Plane for the individual data points. © 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS.