ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE
The Astrophysical Journal Letters American Astronomical Society 724:1 (2010) l16-l21
Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)
Abstract:
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT. © 2010 Copyright SPIE - The International Society for Optical Engineering.Expected performance and simulated observations of the instrument HARMONI at the European Extremely Large Telescope (E-ELT)
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)
Abstract:
HARMONI has been conceived as a workhorse visible and near-infrared (0.47-2.45 microns) integral field spectrograph for the European Extremely Large Telescope (E-ELT). It provides both seeing and diffraction limited observations at several spectral resolutions (R= 4000, 10000, 20000). HARMONI can operate with almost any flavor of AO (e.g. GLAO, LTAO, SCAO), and it is equipped with four spaxel scales (4, 10, 20 and 40 mas) thanks to which it can be optimally configured for a wide variety of science programs, from ultra-sensitive observations of point sources to highangular resolution spatially resolved studies of extended objects. In this paper we describe the expected performance of the instrument as well as its scientific potential. We show some simulated observations for a selected science program, and compare HARMONI with other ground and space based facilities, like VLT, ALMA, and JWST, commenting on their synergies and complementarities. © 2010 Copyright SPIE - The International Society for Optical Engineering.HARMONI: A single-field wide-band integral-field spectrograph for the European ELT
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)