FRATs: A real-time search for fast radio transients with LOFAR
Proceedings of Science 112 (2010)
Abstract:
The radio sky is not steady on timescales below one second. Pulsars (including the rotating radio transients RRATs) and solar-system objects (e.g. solar flares, jupiter bursts, saturn lightning) give rise to sub-second pulses. Also in many known radiation processes coherent radiation can more easily occur at longer wavelengths, for which the size of the emitting region is comparable to the wavelength. This makes low frequency surveys ideally suited for the detection of new emission mechanisms caused by compact objects, such as white dwarfs, neutron stars and black holes. To detect as many of these Fast Radio Transients (FRATs) as possible, we are setting up a technique to detect and identify short single pulses with LOFAR in real-time, with unprecedented sensitivity in this frequency range, and excellent discrimination against terrestrial signals.Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio
Monthly Notices of the Royal Astronomical Society 401:2 (2010) 1255-1263
Abstract:
In this paper, we report on radio (Very Large Array and Austrialian Telescope Compact Array) and X-ray (RXTE, Chandra and Swift) observations of the outburst decay of the transient black hole candidate H 1743-322 in early 2008. We find that the X-ray light curve followed an exponential decay, levelling off towards its quiescent level. The exponential decay time-scale is ≈4 days and the quiescent flux corresponds to a luminosity of erg s-1. This together with the relation between quiescent X-ray luminosity and orbital period reported in the literature suggests that H 1743-322 has an orbital period longer than ≈10 h. Both the radio and X-ray light curve show evidence for flares. The radio-X-ray correlation can be well described by a power-law with index ≈0.18. This is much lower than the index of ≈0.6-0.7 found for the decay of several black hole transients before. The radio spectral index measured during one of the radio flares while the source is in the low-hard state is -0.5 ± 0.15, which indicates that the radio emission is optically thin. This is unlike what has been found before in black hole sources in the low-hard state. We attribute the radio flares and the low index for the radio-X-ray correlation to the presence of shocks downstream the jet flow, triggered by ejection events earlier in the outburst. We find no evidence for a change in X-ray power-law spectral index during the decay, although the relatively high extinction of NH ≈ 2.3 × 1022 cm-2 limits the detected number of soft photons and thus the accuracy of the spectral fits. © 2009 RAS.Formation of slowly rotating early-type galaxies via major mergers: a resolution study
Monthly Notices of the Royal Astronomical Society 406:4 (2010) 2405-2420
Abstract:
We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.Formation of slowly rotating elliptical galaxies in major mergers. A resolution study
AIP Conference Proceedings 1240 (2010) 405-406
Abstract:
We study resolution effects in numerical simulations of gas-rich (20% of the total baryonic mass) major mergers, and show that the formation of slowly-rotating elliptical galaxies requires a resolution that is beyond the present-day standards to be properly modelled. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of wet mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. © 2010 American Institute of Physics.H-ATLAS: PACS imaging for the Science Demonstration Phase
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 38-47