Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics
Monthly Notices of the Royal Astronomical Society 399:4 (2009) 1839-1857
Abstract:
We present observations of early-type galaxies NGC 524 and 2549 with laser guide star adaptive optics (LGS AO) obtained at GEMINI North telescope using the Near-infrared Integral Field Spectrograph (NIFS) integral field unit (IFU) in the K band. The purpose of these observations is to determine high spatial resolution stellar kinematics within the nuclei of these galaxies and, in combination with previously obtained large-scale observations with the SAURON IFU, to determine the masses (M•) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC 524) and a cusp (NGC 2549), to probe the feasibility of using the galaxy centre as the natural guide source required for LGS AO. We employ an innovative technique where the focus compensation due to the changing distance to the sodium layer is made 'open loop', allowing the extended galaxy nucleus to be used only for tip-tilt correction. The data have spatial resolution of 0.23 and 0.17 arcsec full-width at half maximum (FWHM), where at least ∼40 per cent of flux comes within 0.2, showing that high quality LGS AO observations of these objects are possible. The achieved signal-to-noise ratio (S/N ∼ 50) is sufficiently high to reliably determine the shape of the line-of-sight velocity distribution. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best-fitting models yield M• = (8.3+2.7-1.3) × 108 M⊙ and (M/L)I = 5.8 ± 0.4 for NGC 524 and M• = (1.4 +0.2-1.3) × 107 M⊙ and (M/L)R = 4.7 ± 0.2 for NGC 2549 (all errors are at the 3σ level). We demonstrate that the wide-field SAURON data play a crucial role in the M/L determination increasing the accuracy of M/L by a factor of at least 5, and constraining the upper limits on black hole masses. The NIFS data are crucial in constraining the lower limits of M• and in combination with the large-scale data reducing the uncertainty by a factor of 2 or more. We find that the orbital structure of NGC 524 shows significant tangential anisotropy, while at larger radii both galaxies are consistent with having almost perfectly oblate velocity ellipsoids. Tangential anisotropy in NGC 524 coincides with the size of SMBH sphere of influence and the core region in the light profile. This agrees with predictions from numerical simulations where core profiles are the result of SMBH binaries evacuating the centre nuclear regions following a galaxy merger. However, being a disc dominated fast rotating galaxy, NGC 524 has probably undergone through a more complex evolution. We test the accuracy to which M• can be measured using seeings obtained from typical LGS AO observations, and conclude that for a typical conditions and M• the expected uncertainty is of the order of 50 per cent. © 2009 RAS.Galaxy Zoo: Hanny's Voorwerp, a quasar light echo?
Monthly Notices of the Royal Astronomical Society 399:1 (2009) 129-140
Abstract:
We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny's Voorwerp, is bright in the SDSS g band due to unusually strong [O iii]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-line properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy's own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10 5 yr. This object may thus represent the first direct probe of quasar history on these time-scales. © 2009 RAS.Jets from black hole X-ray binaries: Testing, refining and extending empirical models for the coupling to X-rays
Monthly Notices of the Royal Astronomical Society 396:3 (2009) 1370-1382
Abstract:
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend - notably into the timing properties - the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested. © 2009 RAS.Kinematic constraints on the stellar and dark matter content of spiral and S0 galaxies
Monthly Notices of the Royal Astronomical Society 400:4 (2009) 1665-1689
Abstract:
We present mass models of a sample of 14 spiral and 14 S0 galaxies that constrain their stellar and dark matter content. For each galaxy, we derive the stellar mass distribution from near-infrared photometry under the assumptions of axisymmetry and a constant KS-band stellar mass-to-light ratio. To this we add a dark halo assumed to follow a spherically symmetric Navarro, Frenk and White profile and a correlation between concentration and dark mass within the virial radius, MDM. We solve the Jeans equations for the corresponding potential under the assumption of constant anisotropy in the meridional plane, βz. By comparing the predicted second velocity moment to observed long-slit stellar kinematics, we determine the three best-fitting parameters of the model: and βz. These simple axisymmetric Jeans models are able to accurately reproduce the wide range of observed stellar kinematics, which typically extend to ≈2-3Re or, equivalently, ≈0.5-1R25. Although our sample contains barred galaxies, we argue a posteriori that the assumption of axisymmetry does not significantly bias our results. We find a median stellar mass-to-light ratio at KS-band of with an rms scatter of 0.31. We present preliminary comparisons between this large sample of dynamically determined stellar mass-to-light ratios and the predictions of stellar population models. The stellar population models predict slightly lower mass-to-light ratios than we measure. The mass models contain a median of 15 per cent dark matter by mass within an effective radius Re (defined here as the semimajor axis of the ellipse containing half the KS-band light) and 49 per cent within the optical radius R25. Dark and stellar matter contribute equally to the mass within a sphere of radius 4.1Re or 1.0 R25. There is no evidence of any significant difference in the dark matter content of the spirals and S0s in our sample. Models without dark matter are also able to satisfactorily reproduce the observed kinematics in most cases. The improvement when a halo is added is statistically significant, however, and the stellar mass-to-light ratios of mass models with dark haloes match the independent expectations of stellar population models better. © 2009 RAS.Linking jet emission and X-ray properties in the peculiar neutron star X-ray binary Circinus X-1
Monthly Notices of the Royal Astronomical Society 399:1 (2009) 453-464