Distinguishing local and global influences on galaxy morphology: A Hubble Space Telescope comparison of high and low X-ray luminosity clusters

Astrophysical Journal 566:1 I (2002) 123-136

Authors:

ML Balogh, I Smail, RG Bower, BL Ziegler, GP Smith, RL Davies, A Gaztelu, JP Kneib, H Ebeling

Abstract:

We present a morphological analysis of 17 X-ray-selected clusters at z ∼ 0.25, imaged uniformly with the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2). Eight of these clusters comprise a subsample selected for their low X-ray luminosities (≲1044 ergs s -1), called the low-Lx sample. The remaining nine clusters comprise a high-Lx subsample with Lx > 10 45 ergs s-1. The two subsamples differ in their mean X-ray luminosity by a factor of 30 and span a range of more than 300. The clusters cover a relatively small range in redshift (z = 0.17-0.3, σ z/Z ∼ 0.15), and the data are homogeneous in terms of depth, resolution (0″.17 = 1 h50-1 kpc at z = 0.25), and rest wavelength observed, minimizing differential corrections from cluster to cluster. We fit the two-dimensional surface brightness profiles of galaxies down to very faint absolute magnitudes, M702 ≤, -18.2 + 5 log h50 (roughly 0.01L*R) with parametric models, and quantify their morphologies using the fractional bulge luminosity (B/T). Within a single WFPC2 image, covering a field of ∼ 3′ (1h50-1 Mpc at z = 0.25) in the cluster center, we find that the low-Lx clusters are dominated by galaxies with low B/T (∼ 0), while the high-Lx clusters are dominated by galaxies with intermediate B/T (∼ 0.4). We test whether this difference could arise from a universal morphology-density relation due to differences in the typical galaxy densities in the two samples. We find that small differences in the B/T distributions of the two samples persist with marginal statistical significance (98% confidence based on a binned Χ2 test) even when we restrict the comparison to galaxies in environments with similar projected local galaxy densities. A related difference (also of low statistical significance) is seen between the bulge-luminosity functions of the two cluster samples, while no difference is seen between the disk luminosity functions. From the correlations between these quantities, we argue that the global environment affects the population of bulges, over and above trends seen with local density. On the basis of this result, we conclude that the destruction of disks through ram pressure stripping or harassment is not solely responsible for the morphology-density relation and that bulge formation is less efficient in low-mass clusters, perhaps reflecting a less rich merger history.

The Nature of the Progenitor of the Type II-P Supernova 1999em**Based on observations at the William Herschel Telescope on La Palma and the Canada-France-Hawaii Telescope.

The Astrophysical Journal American Astronomical Society 565:2 (2002) 1089-1100

Authors:

Stephen J Smartt, Gerard F Gilmore, Christopher A Tout, Simon T Hodgkin

The SAURON project — II. Sample and early results

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 329:3 (2002) 513-530

Authors:

P Tim de Zeeuw, M Bureau, Eric Emsellem, R Bacon, C Marcella Carollo, Y Copin, Roger L Davies, Harald Kuntschner, Bryan W Miller, G Monnet, Reynier F Peletier, EK Verolme

A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass

(2002)

Authors:

EK Verolme, M Cappellari, Y Copin, RP van der Marel, R Bacon, M Bureau, RL Davies, BM Miller, PT de Zeeuw

The Hard Truth about Some "Soft" X-ray Transients

(2002)

Authors:

RM Bandyopadhyay, C Brocksopp, RP Fender

Abstract:

We have accumulated multiwavelength lightcurves for eight black hole X-ray binaries which have been observed to enter a supposed ``soft X-ray transient'' outburst, but which in fact remained in the low/hard state throughout the outburst. Comparison of the lightcurve morphologies, spectral behaviour, properties of the QPOs and the radio jet provides the first study of such objects as a subclass of X-ray transients (XRTs). However, rather than assuming that these hard state XRTs are different from ``canonical'' soft XRTs, we prefer to consider the possibility that a new analysis of both soft and hard state XRTs in a spectral context will provide a model capable of explaining the outburst mechanisms for the majority of black hole X-ray binaries.