A UKST survey of blue objects towards the Galactic centre - seven additional fields

Astronomy & Astrophysics EDP Sciences 373:2 (2001) 608-624

Authors:

PL Dufton, SJ Smartt, NC Hambly

On the peak radio and X-ray emission from neutron star and black hole candidate X-ray transients

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 324:4 (2001) 923-930

Authors:

RP Fender, E Kuulkers

On the redshift cut-off for steep-spectrum radio sources

ArXiv astro-ph/0106473 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Chris J Willott, Katherine M Blundell, Steve Eales, Mark Lacy

Abstract:

We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the `most luminous' steep-spectrum radio sources. Although intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF which incorporate distributions in radio spectral shape and linear size as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between z~2.5 and z~4.5. We find this model is favoured over a model with similar evolutionary behaviour to that of optically-selected quasars (i.e. a roughly Gaussian distribution in redshift) with a probability ratio of ~25:1 and ~100:1 for spatially-flat cosmologies with Omega_Lambda = 0 and Omega_Lambda = 0.7 respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock (1990) and Jarvis & Rawlings (2000), in line with the expectations of Unified Schemes.

X-Ray States and Radio Emission in the Black Hole Candidate XTE J1550–564

The Astrophysical Journal American Astronomical Society 554:1 (2001) 43-48

Authors:

S Corbel, P Kaaret, RK Jain, CD Bailyn, RP Fender, JA Tomsick, E Kalemci, V McIntyre, D Campbell-Wilson, JM Miller, ML McCollough

A sample of 6C radio sources designed to find objects at redshift > 4: II --- spectrophotometry and emission line properties

ArXiv astro-ph/0106127 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Mark Lacy, Katherine M Blundell, Andrew J Bunker, Steve Eales, Richard Saunders, Hyron Spinrad, Daniel Stern, Chris J Willott

Abstract:

(Abridged) This is the second in a series of three papers which present and interpret basic observational data on the 6C* 151-MHz radio sample: a low-frequency selected sample which exploits filtering criteria based on radio properties (steep spectral index and small angular size) to find radio sources at redshift z > 4 within a 0.133sr patch of sky. We present results of a programme of optical spectroscopy which has yielded redshifts in the range 0.5 < z < 4.4 for the 29 sources in the sample, all but six of which are secure. We find that the fil tering criteria used for 6C* are very effective in excluding the low-redshift, low-luminosity radio sources: the median redshift of 6C* is z~1.9 compared to z~1.1 for a complete sample matched in 151-MHz flux density. By combining the emission-line dataset for the 6C* radio sources with those for the 3CRR, 6CE and 7CRS samples we establish that z > 1.75 radio galaxies follow a rough proportionality between Lyalpha- and 151 MHz-luminosity which, like similar correlations seen in samples of lower-redshift radio sources, are indicative of a primary link between the power in the source of the photoionising photons (most likely a hidden quasar nucleus) and the power carried by the radio jets. We argue that radio sources modify their environments and that the range of emission-line properties seen is determined more by the range of source age than by the range in ambient environment. This is in accord with the idea that all high-redshift, high-luminosity radio sources are triggered in similar environments, presumably recently collapsed massive structures.