Pathways towards break-even for low convergence ratio direct-drive ICF

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

R Paddock, Heath Martin, Rusko Ruskov, Robbie Scott, Warren Garbett, Brian Haines, Alex Zylstra, Mike Campbell, Tim Collins, Steven Craxton, Ca Thomas, Valeri Goncharov, Ramy Aboushelbaya, Qingsong Feng, Marko von der LEYEN, Iustin Ouatu, Benjamin Spiers, Robin Timmis, Robin Wang, Peter Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 kJ and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of 1D-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break-even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.

Pathways towards break even for low convergence ratio direct-drive inertial confinement fusion

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

Rw Paddock, H Martin, Rt Ruskov, Rhh Scott, W Garbett, Bm Haines, Ab Zylstra, Em Campbell, Tjb Collins, Rs Craxton, Ca Thomas, Vn Goncharov, R Aboushelbaya, Qs Feng, Mw von der Leyen, I Ouatu, Bt Spiers, R Timmis, Rhw Wang, Pa Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of one-dimensional-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.

Suprathermal electrons from the anti-Stokes Langmuir decay instability cascade

Physical Review E American Physical Society 105:4 (2022) 045208

Authors:

QS Feng, R Aboushelbaya, MW von der Leyen, BT Spiers, RW Paddock, I Ouatu, R Timmis, RHW Wang, LH Cao, ZJ Liu, CY Zheng, XT He, PA Norreys

Abstract:

The study of parametric instabilities has played a crucial role in understanding energy transfer to plasma and, with that, the development of key applications such as inertial confinement fusion. When the densities are between 0.11n_{c}≲n_{e}≲0.14n_{c} and the electron temperature is in inertial confinement fusion-relevant temperatures, anomalous hot electrons with kinetic energies above 100keV are generated. Here a new electron acceleration mechanism-the anti-Stokes Langmuir decay instability cascade of forward stimulated Raman scattering-is investigated. This mechanism potentially explains anomalous energetic electron generation in indirectly driven inertial confinement fusion experiments, it also provides a new way of accelerating electrons to higher energy for applications such as novel x-ray sources.

Efficient generation of new orbital angular momentum beams by backward and forward stimulated Raman scattering

(2022)

Authors:

QS Feng, R Aboushelbaya, MW Mayr, WP Wang, RMGM Trines, BT Spiers, RW Paddock, I Ouatu, R Timmis, RHW Wang, R Bingham, PA Norreys

Methods for extremely sparse-angle proton tomography

Physical Review E American Physical Society 104:4 (2021) 045201

Authors:

Ben T Spiers, Ramy Aboushelbaya, Qingsong Feng, Marko W Mayr, Iustin Ouatu, Robert W Paddock, Robin Timmis, Robin H-W Wang, Peter A Norreys

Abstract:

Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is also presented and proposed for use in tandem with these analytical advancements.