WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 440:2 (2014) 1470-1489
Abstract:
We report the discovery of WTS-2 b, an unusually close-in 1.02-d hot Jupiter (MP = 1.12MJ, RP = 1.30RJ) orbiting a K2V star, which has a possible gravitationally bound M-dwarf companion at 0.6 arcsec separation contributing ∼20 per cent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ∼40 Myr, assuming a tidal dissipation quality factor of Q′⋆=106. Q′⋆ is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of Tshift ∼ 17 s after 15 yr assuming Q′⋆=106. A shift less than this would place a direct observational constraint on the lower limit of Q′⋆ in this system. We also report a correction to the previously published expected Tshift for WASP-18 b, finding that Tshift = 356 s after 10 yr for Q′⋆=106, which is much larger than the estimated 28 s quoted in WASP-18 b discovery paper. We attempted to constrain Q′⋆ via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straightforward constraints on Q′⋆ will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K-dwarf
(2014)
CoRoT 223992193: A new, low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk
Astronomy and Astrophysics EDP Sciences 562 (2014) 50-69
Abstract:
We present the discovery of CoRoT 223992193, a double-lined, detached eclipsing binary, comprising two pre-main sequence M dwarfs, discovered by the CoRoT space mission during a 23-day observation of the 3 Myr old NGC 2264 star-forming region. Using multi-epoch optical and near-IR follow-up spectroscopy with FLAMES on the Very Large Telescope and ISIS on the William Herschel Telescope we obtain a full orbital solution and derive the fundamental parameters of both stars by modelling the light curve and radial velocity data. The orbit is circular and has a period of $3.8745745 \pm 0.0000014$ days. The masses and radii of the two stars are $0.67 \pm 0.01$ and $0.495 \pm 0.007$ $M_{\odot}$ and $1.30 \pm 0.04$ and $1.11 ~^{+0.04}_{-0.05}$ $R_{\odot}$, respectively. This system is a useful test of evolutionary models of young low-mass stars, as it lies in a region of parameter space where observational constraints are scarce; comparison with these models indicates an apparent age of $\sim$3.5-6 Myr. The systemic velocity is within $1\sigma$ of the cluster value which, along with the presence of lithium absorption, strongly indicates cluster membership. The CoRoT light curve also contains large-amplitude, rapidly evolving out-of-eclipse variations, which are difficult to explain using starspots alone. The system's spectral energy distribution reveals a mid-infrared excess, which we model as thermal emission from a small amount of dust located in the inner cavity of a circumbinary disk. In turn, this opens up the possibility that some of the out-of-eclipse variability could be due to occultations of the central stars by material located at the inner edge or in the central cavity of the circumbinary disk.Identifying new opportunities for exoplanet characterisation at high spectral resolution
Astronomy & Astrophysics EDP Sciences 561 (2014) a150
Identifying new opportunities for exoplanet characterisation at high spectral resolution
(2013)