On the energetics of a tidally oscillating convective flow

Monthly Notices of the Royal Astronomical Society Oxford University Press 525:1 (2023) 508-526

Abstract:

This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.

Applying a temporal systematics model to vector Apodizing Phase Plate coronagraphic data: TRAP4vAPP

Astronomy & Astrophysics EDP Sciences 674 (2023) a115

Authors:

Pengyu Liu, Alexander J Bohn, David S Doelman, Ben J Sutlieff, Matthias Samland, Matthew A Kenworthy, Frans Snik, Jayne L Birkby, Beth A Biller, Jared R Males, Katie M Morzinski, Laird M Close, Gilles PPL Otten

A spectroscopic thermometer: individual vibrational band spectroscopy with the example of OH in the atmosphere of WASP-33b

(2023)

Authors:

Sam OM Wright, Stevanus K Nugroho, Matteo Brogi, Neale P Gibson, Ernst JW de Mooij, Ingo Waldmann, Jonathan Tennyson, Hajime Kawahara, Masayuki Kuzuhara, Teruyuki Hirano, Takayuki Kotani, Yui Kawashima, Kento Masuda, Jayne L Birkby, Chris A Watson, Motohide Tamura, Konstanze Zwintz, Hiroki Harakawa, Tomoyuki Kudo, Klaus Hodapp, Shane Jacobson, Mihoko Konishi, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Takuma Serizawa, Akitoshi Ueda, Sébastien Vievard, Sergei N Yurchenko

Applying a temporal systematics model to vector Apodizing Phase Plate coronagraphic data: TRAP4vAPP

(2023)

Authors:

Pengyu Liu, Alexander J Bohn, David S Doelman, Ben J Sutlieff, Matthias Samland, Matthew A Kenworthy, Frans Snik, Jayne L Birkby, Beth A Biller, Jared R Males, Katie M Morzinski, Laird M Close, Gilles PPL Otten

Carbon monoxide emission lines reveal an inverted atmosphere in the ultra hot Jupiter WASP-33 b consistent with an eastward hot spot

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 522:2 (2023) 2145-2170

Authors:

Lennart van Sluijs, Jayne L Birkby, Joshua Lothringer, Elspeth KH Lee, Ian JM Crossfield, Vivien Parmentier, Matteo Brogi, Craig Kulesa, Don McCarthy, David Charbonneau