Tidally-induced angular momentum transport in disks

ArXiv astro-ph/0008514 (2000)

Abstract:

We discuss the transport of angular momentum induced by tidal effects in a disk surrounding a star in a pre-main sequence binary system. We consider the effect of both density and bending waves. Although tidal effects are important for truncating protostellar disks and for determining their size, it is unlikely that tidally-induced angular momentum transport plays a dominant role in the evolution of protostellar disks. Where the disk is magnetized, transport of angular momentum is probably governed by MHD turbulence. In a non self-gravitating laminar disk, the amount of transport provided by tidal waves is probably too small to account for the lifetime of protostellar disks. In addition, tidal effects tend to be localized in the disk outer regions.

The response of an accretion disc to an inclined dipole with application to AA Tau

(2000)

Authors:

Caroline Terquem, John CB Papaloizou

Disks, extrasolar planets and migration

Space Science Reviews 92:1-2 (2000) 323-340

Authors:

C Terquem, JCB Papaloizou, RP Nelson

Abstract:

We review results about protoplanetary disk models, protoplanet migration and formation of giant planets with migrating cores. We first model the protoplanetary nebula as an α-accretion disk and present steady state calculations for different values of α and gas accretion rate through the disk. We then review the current theories of protoplanet migration in the context of these models, focusing on the gaseous disk-protoplanet tidal interaction. According to these theories, the migration timescale may be shorter than the planetary formation timescale. Therefore we investigate planet formation in the context of a migrating core, considering both the growth of the core and the build-up of the envelope in the course of the migration.

Disk evolution towards planet formation

DISKS, PLANETESIMALS, AND PLANETS, PROCEEDINGS 219 (2000) 19-30

Authors:

C Terquem, JCB Papaloizou, RP Nelson

Disks, Extrasolar Planets and Migration

Chapter in From Dust to Terrestrial Planets, Springer Nature 9 (2000) 323-340

Authors:

Caroline Terquem, John CB Papaloizou, Richard P Nelson