On the stability of an accretion disc containing a toroidal magnetic field: The effect of resistivity
Monthly Notices of the Royal Astronomical Society 287:4 (1997) 771-789
Abstract:
We extend a previous study of the global stability of a stratified differentially rotating disc containing a toroidal magnetic field to include the effect of a non-zero resistivity η. We consider the situation when the disc is stable to convection in the absence of the magnetic field. The most robust buoyancy driven unstable modes, which occur when the field is strong enough, have low azimuthal mode number m. They grow exponentially, apparently belonging to a discrete spectrum. They exist for the dimensionless ratio η/(H2Ω) smaller than ∼ 10-2, where Ω is the angular velocity and H is the disc semithickness. In contrast the magnetorotational modes develop arbitrarily small radial scale and show transient amplification as expected from a shearing sheet analysis. The most robust modes of this type are local in all directions. Because of their more global character, the buoyancy driven modes may be important for the generation of large-scale fields and outflows. © 1997 RAS.Precessing warped discs in close binary systems
Chapter in Accretion Disks — New Aspects, Springer Nature 487 (1997) 182-198
The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations
(1996)
On the stability of an accretion disc containing a toroidal magnetic field
Monthly Notices of the Royal Astronomical Society 279:3 (1996) 767-784
Abstract:
We study the stability of an accretion disc with an embedded toroidal magnetic field to general perturbations. Disc models are considered in which the equilibrium variables depend on both the radial and vertical coordinates. We consider the full global problem in which the disc may be in the form of a narrow annulus, or occupy a significant radial extent. Perturbations with azimuthal mode number m in the range zero up to the ratio of the radius to disc scmithickness are considered. Discs containing a purely toroidal magnetic field are always found to be unstable. We find spectra of unstable modes using local techniques. In the absence of dissipation, these modes may occupy arbitrarily small scales in the radial and vertical directions. One class of modes is driven primarily by buoyancy, while the other is driven by shear independently of the equilibrium stratification. The first type of instability predominates if the field is large, while the second type predominates if the field is weak and the underlying medium is strongly stable to convection. We also investigate stability by solving the initial value problem for perturbations numerically. We find, for our disc models, that local instabilities predominate over any possible global instability. Their behaviour is in good accord with the local analysis. The associated growth rates become just less than the orbital frequency when the ratio of magnetic energy density to pressure reaches about 10 per cent. Instabilities of the kinds discussed here may provide a mechanism for limiting the growth of toroidal fields in dynamo models of accretion discs.The tidally induced warping, precession and truncation of accretion discs in binary systems: Three-dimensional simulations
Monthly Notices of the Royal Astronomical Society 282:2 (1996) 597-613