Erratum: “Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences. II. Comparison with Observations” (2017, ApJ, 835, 198)

The Astrophysical Journal American Astronomical Society 917:2 (2021) 113

Authors:

Thaddeus D Komacek, Adam P Showman, Xianyu Tan

Simulating gas giant exoplanet atmospheres with Exo-FMS: comparing semigrey, picket fence, and correlated-k radiative-transfer schemes

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 506:2 (2021) 2695-2711

Authors:

Elspeth KH Lee, Vivien Parmentier, Mark Hammond, Simon L Grimm, Daniel Kitzmann, Xianyu Tan, Shang-Min Tsai, Raymond T Pierrehumbert

Abstract:

Radiative-transfer (RT) is a fundamental part of modelling exoplanet atmospheres with general circulation models (GCMs). An accurate RT scheme is required for estimates of the atmospheric energy transport and for gaining physical insight from model spectra. We implement three RT schemes for Exo-FMS: semigrey, non-grey ‘picket fence’, and real gas with correlated-k. We benchmark the Exo-FMS GCM, using these RT schemes to hot Jupiter simulation results from the literature. We perform a HD 209458b-like simulation with the three schemes and compare their results. These simulations are then post-processed to compare their observable differences. The semigrey scheme results show qualitative agreement with previous studies in line with variations seen between GCM models. The real gas model reproduces well the temperature and dynamical structures from other studies. After post-processing our non-grey picket fence scheme compares very favourably with the real gas model, producing similar transmission spectra, emission spectra, and phase curve behaviours. Exo-FMS is able to reliably reproduce the essential features of contemporary GCM models in the hot gas giant regime. Our results suggest the picket fence approach offers a simple way to improve upon RT realism beyond semigrey schemes.

Redox hysteresis of super-Earth exoplanets from magma ocean circulation

Astrophysical Journal Letters American Astronomical Society 914:1 (2021) L4

Abstract:

Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub-Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of primary envelope-stripped exoplanets may thus constrain magma ocean dynamics.

Comment on ‘Unintentional unfairness when applying new greenhouse gas emissions metrics at country level’

Environmental Research Letters IOP Publishing 16:6 (2021) 068001

Authors:

Michelle Cain, Keith Shine, David Frame, John Lynch, Adrian Macey, Ray Pierrehumbert, Myles Allen

TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report

The Planetary Science Journal American Astronomical Society 2:3 (2021) 106

Authors:

Thomas J Fauchez, Martin Turbet, Denis E Sergeev, Nathan J Mayne, Aymeric Spiga, Linda Sohl, Prabal Saxena, Russell Deitrick, Gabriella Gilli, Shawn D Domagal-Goldman, François Forget, Richard Consentino, Rory Barnes, Jacob Haqq-Misra, MJ Way, Eric T Wolf, Stephanie Olson, Jaime S Crouse, Estelle Janin, Emeline Bolmont, Jérémy Leconte, Guillaume Chaverot, Yassin Jaziri, Kostantinos Tsigaridis, Jun Yang, Daria Pidhorodetska, Ravi K Kopparapu, Howard Chen, Ian A Boutle, Maxence Lefevre, Benjamin Charnay, Andy Burnett, John Cabra, Najja Bouldin