Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

ArXiv 2505.03604 (2025)

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish CFC Hay, Richard D Chatterjee, Tim Lichtenberg, Raymond T Pierrehumbert

The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape

arXiv:2504.19872 [astro-ph.EP]

Authors:

Xuan Ji, Richard D. Chatterjee, Brandon Park Coy, Edwin S. Kite

Abstract:

The "cosmic shoreline", a semi-empirical relation that separates airless worlds from worlds with atmospheres as proposed by Zahnle & Catling (2017), is now guiding large-scale JWST surveys aimed at detecting rocky exoplanet atmospheres. We expand upon this framework by revisiting the shorelines using existing hydrodynamic escape models applied to Earth-like, Venus-like, and steam atmospheres for rocky exoplanets, and we estimate energy-limited escape rates for CH4 atmospheres. We determine the critical instellation required for atmospheric retention by calculating time-integrated atmospheric mass loss. Our analysis introduces a new metric for target selection in the Rocky Worlds DDT and refines expectations for rocky planet atmosphere searches in Cycle 4. Exploring initial volatile inventory ranging from 0.01% to 1% of planetary mass, we find that its variation prevents the definition of a unique clear-cut shoreline, though non-linear escape physics can reduce this sensitivity to initial conditions. Additionally, uncertain distributions of high-energy stellar evolution and planet age further blur the critical instellations for atmospheric retention, yielding broad shorelines. Hydrodynamic escape models find atmospheric retention is markedly more favorable for higher-mass planets orbiting higher-mass stars, with carbon-rich atmospheres remaining plausible for 55 Cancri e despite its extreme instellation. Dedicated modeling efforts are needed to better constrain the escape dynamics of secondary atmospheres, such as the role of atomic line cooling, especially for Earth-sized planets. Finally, we illustrate how density measurements can be used to statistically test the existence of the cosmic shorelines, emphasizing the need for more precise mass and radius measurements.

Transmission spectroscopy of WASP-52 b with JWST NIRISS: Water and helium atmospheric absorption, alongside prominent star-spot crossings

Monthly Notices of the Royal Astronomical Society (2025) staf489

Authors:

Marylou Fournier-Tondreau, Yanbo Pan, Kim Morel, David Lafrenière, Ryan J MacDonald, Louis-Philippe Coulombe, Romain Allart, Loïc Albert, Michael Radica, Caroline Piaulet-Ghorayeb, Pierre-Alexis Roy, Stefan Pelletier, Lisa Dang, René Doyon, Björn Benneke, Nicolas B Cowan, Antoine Darveau-Bernier, Olivia Lim, Étienne Artigau, Doug Johnstone, Lisa Kaltenegger, Jake Taylor, Laura Flagg

Impact of varying redox states on crystallization and atmospheric composition of rocky exoplanets.

Copernicus Publications (2025)

Authors:

Mariana Sastre, Tim Lichtenberg, Dan Bower, Harrison Nicholls, Inga Kamp

The geology of planetary atmospheres

Copernicus Publications (2025)