The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape

The Astrophysical Journal American Astronomical Society 992:2 (2025) 198-198

Authors:

Xuan 纪璇 Ji, Richard D Chatterjee, Brandon Park Coy, Edwin Kite

Abstract:

Abstract The “cosmic shoreline,” a semi-empirical relation that separates airless worlds from worlds with atmospheres as proposed by K. J. Zahnle & D. C. Catling, is now guiding large-scale JWST surveys aimed at detecting rocky exoplanet atmospheres. We expand upon this framework by revisiting the shoreline using existing hydrodynamic escape models applied to Earth-like, Venus-like, and steam atmospheres for rocky exoplanets, and we estimate energy-limited escape rates for CH4 atmospheres. We determine the critical instellation required for atmospheric retention by calculating time-integrated atmospheric mass loss. Our analysis introduces a new metric for target selection in the Rocky Worlds Director’s Discretionary Time and refines expectations for rocky planet atmosphere searches. Exploring initial volatile inventory ranging from 0.01% to 1% of planetary mass, we find that its variation prevents the definition of a unique clear-cut shoreline, though nonlinear escape physics can reduce this sensitivity to initial conditions. Additionally, uncertain distributions of high-energy stellar evolution and planet age further blur the critical instellations for atmospheric retention, yielding broad shorelines. Hydrodynamic escape models find atmospheric retention is markedly more favorable for higher-mass planets orbiting higher-mass stars, with carbon-rich atmospheres remaining plausible for 55 Cancri e despite its extreme instellation. We caution that our estimates are sensitive to processes with poorly understood dynamics, such as atomic line cooling. Finally, we illustrate how density measurements can be used to statistically test the existence of the cosmic shorelines, emphasizing the need for more precise mass and radius measurements.

Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

Monthly Notices of the Royal Astronomical Society 541:3 (2025), pp. 2566–2584

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish C. F. C. Hay, Richard D. Chatterjee, Tim Lichtenberg, and Raymond T. Pierrehumbert

Abstract:

Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.

Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2566-2584

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish CFC Hay, Richard D Chatterjee, Tim Lichtenberg, Raymond T Pierrehumbert

Abstract:

Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.

A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres

Copernicus Publications (2025)

Authors:

Claire Marie Guimond, Oliver Shorttle, Raymond T Pierrehumbert

Abstract:

To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.

Characterising turbulent cascades and zonal jet formation processes from observations of cloud level winds on Jupiter and Saturn

Copernicus Publications (2025)

Authors:

Peter L Read, Arrate Antunano, Hadrien Bobas, Greg Colyer, Shanshan Ding, Teresa del Río Gaztelurrutia, Agustin Sanchez-Lavega, Roland Young

Abstract:

Recent analyses of wind measurements obtained from tracking cloud motions in spacecraft images of Jupiter and Saturn[1,2] indicate that nonlinear scale-to-scale transfers of kinetic energy act from small to large scales over a wide range of length scales, much as anticipated for 2D or geostrophic turbulence paradigms. At the smallest resolvable scales, however, there is evidence in observations of a forward (downscale) transfer, at least at low and middle latitudes on Jupiter, much like in the Earth’s atmosphere. Moreover, the upscale transfers at the largest spatial scales are evidently dominated by spectrally non-local, highly anisotropic eddy-zonal interactions associated with the generation of intense zonal jets and equatorial super-rotation by direct eddy-zonal flow exchanges. Most analyses to date have emphasised the global mean interactions for both planets, thereby focusing on the spatially homogeneous and isotropic components of the turbulence. Here we present some new analyses of spectral energy transfers on both Jupiter and Saturn that resolve variations in latitude[cf 3], thereby shedding new light on non-homogeneous aspects of jovian turbulent interactions. The results indicate significant variability and inhomogeneity between different locations, with a clear distinction between the tropics, the extratropical middle latitudes and the polar regions. We discuss these in light of other observations and models of gas giant circulation and related laboratory experimental analogues.[1] Antu˜nano, A., del Río-Gaztelurrutia, T., Sánchez-Lavega, A., & Hueso, R. (2015) Dynamics of Saturn’s polar regions. J. Geophys. Res.: Planets, 120 , 155–176. doi:10.1002/2014JE004709[2] Read, P. L., Antu˜nano, A., Cabanes, S., Colyer, G., del Río-Gaztelurrutia, T., Sánchez-Lavega, A. (2022). Energy exchanges in Saturn’s polar regions fromCassini observations: Eddy-zonal flow interactions. J. Geophys. Res., 127 , e2021JE006973. https://doi.org/10.1029/2021JE006973[3] Chemke, R., & Kaspi, Y. (2015). The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci., 72 , 3891–3907. doi: 10.1175/JAS-D-15-0007.