Further seasonal changes in Uranus' cloud structure observed by Gemini-North and UKIRT
Icarus 218:1 (2012) 47-55
Abstract:
Near-infrared observations of Uranus were made in October/November 2010 with the Gemini-North telescope in Hawaii, using NIFS, an integral field spectrograph, and the NIRI instrument in imaging mode. Observations were acquired using adaptive optics and have a spatial resolution of approximately 0.1-0.2'.The observed spectra along Uranus' central meridian were analysed using a multiple-scattering retrieval algorithm to infer the vertical/latitudinal variation in cloud optical depth, which we compare with previous observations made by Gemini-North/NIFS in 2009 and UKIRT/UIST observations made between 2006 and 2008. Assuming a continuous distribution of small particles (r~ 1μm, and refractive index of 1.4. +. 0. i) with the single scattering albedo set to 0.75 and using a Henyey-Greenstein phase function with asymmetry parameter set to 0.7 at all wavelengths and latitudes, the retrieved cloud density profiles show that the north polar zone at 45°N has continued to steadily brighten while the south polar zone at 45°S has continued to fade. As with our previous analyses we find that, assuming that the methane vertical profile is the same at all latitudes, the clouds forming these polar zones at 45°N and 45°S lie at slightly lower pressures than the clouds at more equatorial latitudes. However, we also find that the Gemini data can be reproduced by assuming that the main cloud remains fixed at ~2. bar at all latitudes and adjusting the relative humidity of methane instead. In this case we find that the deep cloud is still more opaque at the equator and at the zones at 45°N and 45°S and shows the same seasonal trends as when the methane humidity remain fixed. However, with this approach the relative humidity of methane is seen to rise sharply from approximately 20% at polar latitudes to values closer to 80% for latitudes equatorward of 45°S and 45°N, consistent with the analysis of 2002 HST observations by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-302), with a possible indication of seasonal variability. Overall, Uranus appeared to be less convectively active in 2010 than in the previous 4. years, supporting the conclusion that now the northern spring equinox (which occurred in 2007) has passed, the atmosphere is settling back into the more quiescent state seen by Voyager 2 in 1986. © 2011 Elsevier Inc.Models of the global cloud structure on Venus derived from Venus Express observations
Icarus 217:2 (2012) 542-560
Abstract:
Spatially-resolved near-infrared spectra from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere of Venus. VIRTIS achieved the first systematic, global mapping of Venus at wavelengths within transparency windows in the 1.6-2.6. μm range, which are sensitive on the nightside to absorption by the lower and middle cloud layers of thermally-emitted radiation from the hot lower atmosphere (Taylor, F.W., Crisp, D., Bézard, B. [1997]. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 325-351). The cloud model used to interpret the spectra is based on previous work by Pollack et al. (Pollack, J., Dalton, J., Grinspoon, D., Wattson, R., Freedman, R., Crisp, D., Allen, D., Bézard, B., de Bergh, C., Giver, L. [1993]. Icarus 103, 1-42), Grinspoon et al. (Grinspoon, D.H., Pollack, J.B., Sitton, B.R., Carlson, R.W., Kamp, L.W., Baines, K.H., Encrenaz, T., Taylor, F.W. [1993]. Planet. Space Sci. 41, 515-542) and Crisp (Crisp, D. [1986]. Icarus 67, 484-514), and assumes a composition for the cloud particles of sulfuric acid and water, with acid concentration as a free parameter to be determined. Other retrieved parameters are the average size of the particles and the altitude of the cloud base in the model. Latitudinal variation in the atmospheric temperature structure was incorporated using data from the Venus Radio Science experiment (VeRa). Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated by comparing measured to calculated spectra over the entire wavelength range, the latter generated using the NEMESIS radiative transfer and retrieval code (Irwin, P.G.J., Teanby, N.A., de Kok, R., Fletcher, L.N., Howett, C.J.A., Tsang, C.C.C., Wilson, C.F., Calcutt, S.B., Nixon, C.A., Parrish, P.D. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150). The sulfuric acid concentration in the cloud particles is found to be higher in regions of optically thick cloud. The cloud base altitude shows a dependence on latitude, reaching a maximum height near -50°. The increased average particle size near the pole found by Wilson et al. (Wilson, C.F., Guerlet, S., Irwin, P.G.J., Tsang, C.C.C., Taylor, F.W., Carlson, R.W., Drossart, P., Piccioni, G. [2008]. J. Geophys. Res. (Planets) 113, E12) and the finding of spatially variable water vapor abundance at35-40. km altitude first reported by Tsang et al. (Tsang, C.C.C., Wilson, C.F., Barstow, J.K., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Piccioni, G., Drossart, P., Svedhem, H. [2010]. Geophys. Res. Lett. 37, L02202) are both confirmed. The implications of these improved descriptions of cloud structure and variability for the chemistry, meteorology, and radiative energy balance on Venus are briefly discussed. © 2011 Elsevier Inc.Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations
Icarus 217:2 (2012) 629-639
Abstract:
Recent retrievals of zonal thermal winds obtained in a cyclostrophic regime on Venus are generally consistent with cloud tracking measurements at mid-latitudes, but become unphysical in polar regions where the values obtained above the clouds are often less than or close to zero. Using a global atmospheric model, we show that the main source of errors that appear in the polar regions when retrieving the zonal thermal winds is most likely due to uncertainties in the zonal wind intensity in the choice of the lower boundary condition.Here we suggest a new and robust method to better estimate the lower boundary condition for high latitudes, thereby improving the retrieved zonal thermal winds throughout the high latitudes middle atmosphere. This new method is applied to temperature fields derived from Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data on board the Venus Express spacecraft. We obtain a zonal thermal wind field that is in better agreement with other, more direct methods based on either retrieving the zonal winds from cloud tracking or from direct measurements of the meridional slope of pressure surfaces. © 2011 Elsevier Inc.Models of the global cloud structure on Venus derived from Venus Express observations
Icarus Elsevier 217:2 (2012) 542-560
EnVision: Taking the pulse of our twin planet
Experimental Astronomy 33:2-3 (2012) 337-363