Characterizing atmospheric waves on Venus, Earth, and Mars

Eos 93:23 (2012) 220

Authors:

CF Wilson, A Piccialli

Abstract:

Atmospheric Waves Workshop; Noordwijk, Netherlands, 9-10 November 2011 Experts in observations and modeling of atmospheric waves from the Earth and planetary atmospheric science communities came together at a November 2011 workshop held at the European Space Agency's (ESA) European Space Research and Technology Centre (ESTEC) site in the Netherlands to discuss the nature of waves observed in Venus's atmosphere and their comparison to those on Earth and Mars. ESA's Venus Express (VEx) satellite and ground-based observers find atmospheric waves at many scales. Migrating solar tides and other planetary-scale waves are observed in cloud-tracking wind vectors and temperature fields. Mesoscale gravity waves (GWs) can also be seen at a variety of levels from the cloud base up to the thermosphere, evident in imagery and in vertical profiles of temperature, density, and aerosol abundance. This workshop focused particularly on GWs, as their role in the atmospheric circulation is still poorly understood. © 2012 American Geophysical Union. All Rights Reserved.

Discovery and characterisation of detached M-dwarf eclipsing binaries in the WFCAM Transit Survey

(2012)

Authors:

JL Birkby, SV Nefs, ST Hodgkin, G Kovács, B Sipöcz, DJ Pinfield, IAG Snellen, D Mislis, F Murgas, N Lodieu, EJW de Mooij, N Goulding, P Cruz, H Stoev, M Cappetta, E Pallé, D Barrado, R Saglia, EL Martín, Y Pavlenko

Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey

(2012)

Authors:

SV Nefs, JL Birkby, IAG Snellen, ST Hodgkin, DJ Pinfield, B Sipocz, G Kovacs, D Mislis, RP Saglia, J Koppenhofer, P Cruz, D Barrado, EL Martin, N Goulding, H Stoev, J Zendejas, C del Burgo, M Cappetta, YV Pavlenko

The signature of orbital motion from the dayside of the planet τ Boötis b.

Nature 486:7404 (2012) 502-504

Authors:

Matteo Brogi, Ignas AG Snellen, Remco J de Kok, Simon Albrecht, Jayne Birkby, Ernst JW de Mooij

Abstract:

The giant planet orbiting τ Boötis (named τ Boötis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Boötis b. At a spectral resolution of ∼100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5° ± 1.5° and a mass 5.95 ± 0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Boötis b by the ultraviolet emission from the active host star.

The 2010 European Venus Explorer (EVE) mission proposal

Experimental Astronomy 33:2-3 (2012) 305-335

Authors:

CF Wilson, E Chassefière, E Hinglais, KH Baines, TS Balint, JJ Berthelier, J Blamont, G Durry, CS Ferencz, RE Grimm, T Imamura, JL Josset, F Leblanc, S Lebonnois, JJ Leitner, SS Limaye, B Marty, E Palomba, SV Pogrebenko, SCR Rafkin, DL Talboys, R Wieler, LV Zasova, C Szopa

Abstract:

The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an 'M-class' mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (~25°C and ~0. 5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond. © 2011 Springer Science+Business Media B.V.