Volcanic gas plumes’ effect on the spectrum of Venus

Icarus 438 (2025)

Authors:

JA Dias, P Machado, S Robert, J Erwin, M Lefèvre, CF Wilson, D Quirino, JC Duarte

Abstract:

Venus is home to thousands of volcanoes, with a wide range of volumes and sizes. Its surface is relatively young, with a temperature of approximately 735 K and an atmosphere of 92 bar. Past and possible ongoing volcanic outgassing is expected to provide a source to the sustenance of this massive atmosphere, dominated by CO2 and SO2. The lower atmosphere can be investigated in the near-infrared transparency windows on the nightside, such as the 2.3μm thermal emission window, which provides a chance of detection of species with volcanic origin, such as water vapor. The Planetary Spectrum Generator was used to simulate the nightside 2.3μm thermal emission window of Venus. We simulated the effect of a volcanic gas plume rising to a ceiling altitude, for species such as H2O, CO, OCS, HF and SO2. The sensitivity of the radiance spectrum at different wavelengths was explored as an attempt to qualitatively access detection for future measurements of both ground-based and space-instrumentation. We conclude from our qualitative analysis that for the H2O, CO and OCS plumes simulated there is potential to achieve a detection in the future, given a minimum required signal-to-noise ratio of 50. For SO2 and HF plumes, a higher signal-to-noise ratio would be needed.

Ground-breaking exoplanet science with the ANDES spectrograph at the ELT

Experimental Astronomy Springer Nature 59:3 (2025) 29

Authors:

Enric Palle, Katia Biazzo, Emeline Bolmont, Paul Mollière, Katja Poppenhaeger, Jayne Birkby, Matteo Brogi, Gael Chauvin, Andrea Chiavassa, Jens Hoeijmakers, Emmanuel Lellouch, Christophe Lovis, Roberto Maiolino, Lisa Nortmann, Hannu Parviainen, Lorenzo Pino, Martin Turbet, Jesse Weder, Simon Albrecht, Simone Antoniucci, Susana C Barros, Andre Beaudoin, Bjorn Benneke, Isabelle Boisse, Aldo S Bonomo, Francesco Borsa, Alexis Brandeker, Wolfgang Brandner, Lars A Buchhave, Anne-Laure Cheffot, Robin Deborde, Florian Debras, Rene Doyon, Paolo Di Marcantonio, Paolo Giacobbe, Jonay I González Hernández, Ravit Helled, Laura Kreidberg, Pedro Machado, Jesus Maldonado, Alessandro Marconi, BL Canto Martins, Adriano Miceli, Christoph Mordasini, Mamadou N’Diaye, Andrzej Niedzielski, Brunella Nisini, Livia Origlia, Celine Peroux, Alexander GM Pietrow, Enrico Pinna, Emily Rauscher, Sabine Reffert, Cristina Rodríguez-López, Philippe Rousselot, Nicoletta Sanna, Nuno C Santos, Adrien Simonnin, Alejandro Suárez Mascareño, Alessio Zanutta, Maria Rosa Zapatero-Osorio, Mathias Zechmeister

Characterizing Extreme Compositions on the Moon Using Thermal Infrared Spectroscopy

Journal of Geophysical Research Planets American Geophysical Union (AGU) 130:5 (2025)

Authors:

Nandita Kumari, Laura B Breitenfeld, Katherine Shirley, Timothy D Glotch

A Search for the Near‐Surface Particulate Layer Using Venera 13 In Situ Spectroscopic Observations

Journal of Geophysical Research: Planets American Geophysical Union 130:4 (2025) e2024JE008728

Authors:

Shubham V Kulkarni, Patrick GJ Irwin, Colin F Wilson, Nikolai I Ignatiev

Abstract:

Whether or not there is a particulate layer in the lowest 10 km of the Venusian atmosphere is still an open question. Some of the past in situ experiments showed the presence of a detached particulate layer, and a few suggested the existence of finely dispersed aerosols, while other instruments supported the idea of no particulate matter in the deep atmosphere. In this work, we investigate the presence of a near‐surface particulate layer (NSPL) using in situ data from the Venera 13 mission. While the original spectrophotometric data from Venera 13 were lost, we have reconstructed a part of this data by digitizing the old graphic material and selected the eight most reliable Venera 13 downward radiance profiles from 0.48 to 0.8 μ ${\upmu }$ m for our retrievals. The retrievals suggest the existence of the particulate layer with a peak in the altitude range of 3.5–5 km. They further indicate a log‐normal particle size distribution with a mean radius between 0.6 and 0.85 μ ${\upmu }$ m. The retrievals constrain the real refractive index of the particles to lie around the range of 1.4–1.6, with the imaginary refractive index of a magnitude of 10 − 3 ${10}^{-3}$ . Based on refractive index retrievals, uplifted basalt particles or volcanic ash could be responsible for near‐surface particulates. In comparison, volatile condensates appear less likely to be behind the formation of NSPL.

Global Distribution and Seasonality of Martian Atmospheric HCl Explained Through Heterogeneous Chemistry

Geophysical Research Letters American Geophysical Union (AGU) 52:6 (2025)

Authors:

Paul M Streeter, Kylash Rajendran, Stephen R Lewis, Kevin S Olsen, Alexander Trokhimovskiy, Oleg Korablev, Manish R Patel