DSMC analysis of Astrobotic's Peregrine Mission-1: MON-25 leak and water outgassing
Acta Astronautica 237 (2025) 196-207
Abstract:
Astrobotic's Peregrine Mission-1 spacecraft experienced a propulsion system anomaly that prevented the lander from reaching the Moon. During the mission, several instruments operated successfully in cis-lunar space. Among them, the Peregrine Ion Trap Mass Spectrometer (PITMS) measured both the presence of outgassing water and nitrogen oxides traceable to the MON-25 oxidizer. We performed Direct Simulation Monte Carlo (DSMC) studies of the oxidizer leak on Peregrine to characterize the gas diffusion from the leak to the instrument, mediated by inter-species collisions and gas–surface interaction. We conclude that the latter process was prevalent and that diffusion paths through Peregrine are necessary to explain the PITMS detections. Our DSMC study and estimation of Peregrine's outgassing rate suggest that, at the early stage of the mission, the spacecraft released water at a rate comparable to the Space Shuttle and at a much larger rate than typical spacecraft during science operations. This provides useful information for planning future operations of science instruments on commercial missions.Volcanic gas plumes’ effect on the spectrum of Venus
Icarus 438 (2025)
Abstract:
Venus is home to thousands of volcanoes, with a wide range of volumes and sizes. Its surface is relatively young, with a temperature of approximately 735 K and an atmosphere of 92 bar. Past and possible ongoing volcanic outgassing is expected to provide a source to the sustenance of this massive atmosphere, dominated by CO2 and SO2. The lower atmosphere can be investigated in the near-infrared transparency windows on the nightside, such as the 2.3μm thermal emission window, which provides a chance of detection of species with volcanic origin, such as water vapor. The Planetary Spectrum Generator was used to simulate the nightside 2.3μm thermal emission window of Venus. We simulated the effect of a volcanic gas plume rising to a ceiling altitude, for species such as H2O, CO, OCS, HF and SO2. The sensitivity of the radiance spectrum at different wavelengths was explored as an attempt to qualitatively access detection for future measurements of both ground-based and space-instrumentation. We conclude from our qualitative analysis that for the H2O, CO and OCS plumes simulated there is potential to achieve a detection in the future, given a minimum required signal-to-noise ratio of 50. For SO2 and HF plumes, a higher signal-to-noise ratio would be needed.Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission
The Astrophysical Journal American Astronomical Society 990:2 (2025) 106
Abstract:
High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.Plume Activity on Europa: Current Knowledge and Search Strategy for Europa Clipper
The Planetary Science Journal IOP Publishing 6:8 (2025) 182
Abstract:
The presence of cryovolcanic activity in the form of geyser-like plumes at Jupiter’s moon Europa is a much-debated topic. As an active plume could allow direct sampling by a passing spacecraft of a potentially habitable interior environment, the detection and analysis of ongoing plume activity would be of the highest scientific value. In the past decade, several studies have interpreted different remote and in situ observations as providing evidence for large gaseous plumes at different locations on Europa. However, definitive proof is elusive, and visible imaging data taken during spacecraft flybys do not reveal clear indications of ongoing activity. After arrival at Jupiter in 2030, the NASA Europa Clipper spacecraft will systematically search for and constrain plume activity at Europa utilizing a variety of investigations and methods during, before, and after close flybys. Given the lack of a confirmed plume detection to date, the Europa Clipper science team has adopted a global plume search strategy, not focusing on any specific geographical area or any specific type of observation. This global search strategy assigns enhanced value to data obtained early in the mission, which allows time for further observations and characterization of any observed plume at later times. Here we describe the current state of knowledge on plume activity, the Europa Clipper search strategy, and the role of various instruments on the Europa Clipper payload in this search.Lucy Mission Search Plans for Activity around Its Jovian Trojan Flyby Targets
The Planetary Science Journal IOP Publishing 6:7 (2025) 177