Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations

Journal of Geophysical Research: Planets 114:5 (2009)

Authors:

CCC Tsang, PGJ Irwin, CF Wilson, FW Taylor, C Lee, R De Kok, P Drossart, G Piccioni, B Bezard, S Calcutt

Abstract:

[1] We present nightside observations of tropospheric carbon monoxide in the southern hemisphere near the 35 km height level, the first from Venus Express/Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M-IR. VIRTIS-M data from 2.18 to 2.50 μm, with a spectral resolution of 10 nm, were used in the analysis. Spectra were binned, with widths ranging from 5 to 30 spatial pixels, to increase the signal-to-noise ratio, while at the same time reducing the total number of retrievals required for complete spatial coverage. We calculate the mean abundance for carbon monoxide at the equator to be 23 ± 2 ppm. The CO concentration increases toward the poles, peaking at a latitude of approximately 60°S, with a mean value of 32 ± 2 ppm. This 40% equator-to-pole increase is consistent with the values found by Collard et al. (1993) from Galileo/NIMS observations. Observations suggest an overturning in this CO gradient past 60°S, declining to abundances seen in the midlatitudes. Zonal variability in this peak value has also been measured, varying on the order of 10% (∼3 ppm) at different longitudes on a latitude circle. The zonal variability of the CO abundance has possible implications for the lifetime of CO and its dynamics in the troposphere. This work has definitively established a distribution of tropospheric CO, which is consistent with a Hadley cell circulation, and placed limits on the latitudinal extent of the cell. Copyright 2008 by the American Geophysical Union.

TITAN'S SURFACE BRIGHTNESS TEMPERATURES

ASTROPHYSICAL JOURNAL LETTERS 691:2 (2009) L103-L105

Authors:

DE Jennings, FM Flasar, VG Kunde, RE Samuelson, JC Pearl, CA Nixon, RC Carlson, AA Mamoutkine, JC Brasunas, E Guandique, RK Achterberg, GL Bjoraker, PN Romani, ME Segura, SA Albright, MH Elliott, JS Tingley, S Calcutt, A Coustenis, R Courtin

An electric field sensor to measure charged dust on the Marco Polo asteroid sample return mission

International Astronautical Federation - 59th International Astronautical Congress 2008, IAC 2008 3 (2008) 1741-1748

Authors:

KL Aplin, EC Sawyer, AJ Coates, DJ Parker, GH Jones, NE Bowles, MS Whalley

Abstract:

The Marco Polo mission has been selected by the European Space Agency (ESA) as a candidate for launch under the Cosmic Vision programme in -2017. The mission ultimately aims to understand the origins of the planets and even life itself, by returning a sample of material from a primitive asteroid, representative of the early Solar System. Particles on the surface of the asteroid are readily charged by photoelectric emission. Preliminary calculations suggest that photoelectric fields of tens of volts per metre are expected, and electrostatic transport, levitation, and even complete ejection from the asteroid's gravitational field seem likely for typical particles at the proposed candidate asteroids. The electrical and charged particle environment at the asteroid surface is therefore expected to be significant for sample selection and characterisation. The Asteroid Charge Experiment (ACE), comprising an electric field sensor to detect charged dust particles, and an electron spectrometer to measure both photoelectrons and electrons from the solar wind, is described here. ACE will also be able to determine the relative electrostatic potentials of the spacecraft and asteroid surface, which will quantify the electrical effects of the sampling process itself on the asteroid environment.

Weather and climate on the planets

Weather 63:10 (2008) 313-314

Why we need to go to Venus: The future of European Venus exploration

International Astronautical Federation - 59th International Astronautical Congress 2008, IAC 2008 3 (2008) 1622-1629

Authors:

C Wilson, E Chassefière, T Imamura, O Korablev, K Baines, D Titov, K Aplin, TS Balint, J Blamont, C Ferencz, C Cochrane, F Ferri, M Gerasimov, J Leitner, J Lopez-Moreno, B Marty, M Martynov, S Pogrebenko, A Rodin, J Whiteway, L Zasova

Abstract:

Venus is the most Earthlike planet we know besides our own, in terms of its size and distance from its parent star. It was probably formed from the same materials as the Earth and Mars, at a similar time - why then has it become so different?To address this key question, a team of 170+ scientists from around the world formulated the European Venus Explorer (EVE) mission proposal to the European Space Agency's Cosmic Vision Programme in 2007. Although it was not chosen in the 2007 selection round for programmatic reasons, it was rated a high priority for the future European Space Science so we take this opportunity to reiterate the science goals which motivated the EVE mission, and to discuss the status of technological and programmatic developments required to address these goals.