The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations

Nature Communications Springer Nature 10:1 (2019) 1291

Authors:

CW Hergenrother, CK Maleszewski, MC Nolan, J-Y Li, CY Drouet D'Aubigny, FC Shelly, ES Howell, TR Kareta, MRM Izawa, MA Barucci, EB Bierhaus, H Campins, BE Clark, EJ Christensen, DN Dellagiustina, S Fornasier, CM Hartzell, B Rizk, DJ Scheeres, PH Smith, X-D Zou, DS Lauretta

Abstract:

During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s-1 averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 ± 0.52 × 10-6 degrees day-2, likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.

The unexpected surface of asteroid (101955) Bennu

Nature Springer Nature 568:7750 (2019) 55-60

Authors:

DS Lauretta, DN Dellagiustina, CA Bennett, KJ Becker, SS Balram-Knutson, OS Barnouin, TL Becker, WF Bottke, WV Boynton, H Campins, BE Clark, HC Connolly, CY Drouet D'Aubigny, JP Dworkin, JP Emery, HL Enos, VE Hamilton, CW Hergenrother, ES Howell, MRM Izawa, HH Kaplan, MC Nolan, B Rizk, HL Roper, DJ Scheeres, PH Smith, KJ Walsh, CWV Wolner, Neil Bowles

Abstract:

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.

Maps of Tethys’ thermophysical properties

Icarus Elsevier BV 321 (2019) 705-714

Authors:

Cja Howett, Jr Spencer, T Hurford, A Verbiscer, M Segura

Abstract:

On 11th April 2015 Cassini's Composite Infrared Spectrometer (CIRS) made a series of observations of Tethys’ daytime anti-Saturn hemisphere over a nine-hour time period. During this time the sub-spacecraft position was remarkably stable (0.3° S to 3.9° S; 153.2° W to 221.8° W), and so these observations provide unprecedented coverage of diurnal temperature variations on Tethys’ anti-Saturn hemisphere. In 2012 a thermal anomaly was discovered at low latitudes on Tethys’ leading hemisphere; it appears cooler during the day and warmer at night than its surroundings (Howett et al., 2012) and is spatially correlated with a decrease in the IR3/UV3 visible color ratio (Schenk et al., 2011). The cause of this anomaly is believed to be surface alteration by high-energy electrons, which preferentially bombard low-latitudes of Tethys’ leading hemisphere (Schenk et al., 2011; Howett et al., 2012; Paranicas et al. 2014; Schaible et al., 2017). The thermal anomaly was quickly dubbed “Pac-Man” due to its resemblance to the 1980s video game icon. We use these daytime 2015 CIRS data, along with two sets of nighttime CIRS observations of Tethys (from 27 June 2007 and 17 August 2015) to make maps of bolometric Bond albedo and thermal inertia variations across the anti-Saturn hemisphere of Tethys (including the edge of its Pac-Man region). These maps confirm the presence of the Pac-Man thermal anomaly and show that while Tethys’ bolometric Bond albedo varies negligibly outside and inside the anomaly (0.69 ± 0.02 inside, compared to 0.71 ± 0.04 outside) the thermal inertia varies dramatically (29 ± 10 J m−2 K−1 s−1/2 inside, compared to 9 ± 4 J m−2 K−1 s−1/2 outside). These thermal inertias are in keeping with previously published values: 25 ± 3 J m−2 K−1 s−1/2 inside, and 5 ± 1 J m−2 K−1 s−1/2 outside the anomaly (Howett et al., 2012). A detailed analysis shows that on smaller spatial-scales the bolometric Bond albedo does vary: increasing to a peak value at 180° W. For longitudes between ∼100° W and ∼160° W the thermal inertia increases from northern to southern latitudes, while the reverse is true for bolometric Bond albedo. The thermal inertia on Tethys generally increases towards the center of its leading hemisphere but also displays other notable small-scale variations. These thermal inertia and bolometric Bond albedo variations are perhaps due to differences in competing surface modification by E ring grains and high-energy electrons which both bombard Tethys’ leading hemisphere (but in different ways). A comparison between the observed temperatures and our best thermal model fits shows notable discrepancies in the morning warming curve, which may provide evidence of regional variations in surface roughness effects, perhaps again due to variations in surface alteration mechanisms.

Remote-sensing characterization of major Solar System bodies with the Twinkle space telescope

Journal of Astronomical Telescopes Instruments and Systems SPIE 5:1 (2019) 014006

Authors:

B Edwards, S Lindsay, G Savini, G Tinetti, C Arena, Neil Bowles, M Tessenyi

Abstract:

Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45-m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4 to 1, 1.3 to 2.42, and 2.42 to 4.5 μm). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R ~ 250, λ < 2.42 μm; R ~ 60, λ > 2.42 μm) could be obtained with signal-to-noise ratio (SNR) of > 100 with exposure times of <300 s. For other targets (e.g., Phobos), an SNR > 10 would be achievable in 300 s (or less) for spectra at Twinkle's native resolution. Fainter or smaller targets (e.g., Pluto) may require multiple observations if resolution or data quality cannot be sacrificed. Objects such as the outer dwarf planet Eris are deemed too small, faint or distant for Twinkle to obtain photometric or spectroscopic data of reasonable quality (SNR > 10) without requiring large amounts of observation time. Despite this, the Solar System is found to be permeated with targets that could be readily observed by Twinkle.

Formation of Charon's Red Poles From Seasonally Cold-Trapped Volatiles

(2019)

Authors:

WM Grundy, DP Cruikshank, GR Gladstone, CJA Howett, TR Lauer, JR Spencer, ME Summers, MW Buie, AM Earle, K Ennico, J Wm Parker, SB Porter, KN Singer, SA Stern, AJ Verbiscer, RA Beyer, RP Binzel, BJ Buratti, JC Cook, CM Dalle Ore, CB Olkin, AH Parker, S Protopapa, E Quirico, KD Retherford, SJ Robbins, B Schmitt, JA Stansberry, OM Umurhan, HA Weaver, LA Young, AM Zangari, VJ Bray, AF Cheng, WB McKinnon, RL McNutt, JM Moore, F Nimmo, DC Reuter, PM Schenk, the New Horizons Science Team