Pluto's haze as a surface material

Icarus Elsevier 314 (2018) 232-245

Authors:

WM Grundy, T Bertrand, RP Binzel, MW Buie, BJ Buratti, AF Cheng, JC Cook, DP Cruikshank, SL Devins, CM Dalle Ore, AM Earle, K Ennico, F Forget, P Gao, GR Gladstone, CJA Howett, DE Jennings, JA Kammer, TR Lauer, IR Linscott, CM Lisse, AW Lunsford, WB McKinnon, CB Olkin, AH Parker, S Protopapa, E Quirico, DC Reuter, B Schmitt, KN Singer, JA Spencer, SA Stern, DF Strobel, ME Summers, HA Weaver, GE Weigle, ML Wong, EF Young, LA Young, X Zhang

Spectral characterization of analog samples in anticipation of OSIRIS-REx's arrival at Bennu: A blind test study

Icarus Elsevier 319 (2018) 701-723

Authors:

Kerri L Donaldson Hanna, DL Schrader, EA Cloutis, GD Cody, AJ King, TJ McCoy, DM Applin, JP Mann, Neil E Bowles, Brucato, HC Connolly, E Dotto, LP Keller, LF Lim, BE Clark, VE Hamilton, C Lantz, DS Lauretta, SS Russell, PF Schofield

Abstract:

We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site.

Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates

(2018)

Authors:

RT Mentel, MA Kenworthy, DA Cameron, EL Scott, SN Mellon, R Hudec, JL Birkby, EE Mamajek, A Schrimpf, DE Reichart, JB Haislip, VV Kouprianov, F-J Hambsch, T-G Tan, K Hills, JE Grindlay

MGS‐TES Spectra Suggest a Basaltic Component in the Regolith of Phobos

Journal of Geophysical Research Planets American Geophysical Union (AGU) 123:10 (2018) 2467-2484

Authors:

Timothy D Glotch, Christopher S Edwards, Mehmet Yesiltas, Katherine A Shirley, Dylan S McDougall, Alexander M Kling, Joshua L Bandfield, Christopher DK Herd

A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization

Publications of the Astronomical Society of the Pacific IOP Publishing 130 (2018) 114401

Authors:

Eliza M-R Kempton, Jacob L Bean, Dana R Louie, Drake Deming, Daniel DB Koll, Megan Mansfield, Jessie L Christiansen, Mercedes López-Morales, Mark R Swain, Robert T Zellem, Sarah Ballard, Thomas Barclay, Joanna K Barstow, Natasha E Batalha, Thomas G Beatty, Zach Berta-Thompson, Jayne Birkby, Lars A Buchhave, David Charbonneau, Nicolas B Cowan, Ian Crossfield, Miguel de Val-Borro, René Doyon, Diana Dragomir, Eric Gaidos, Kevin Heng, Renyu Hu, Stephen R Kane, Laura Kreidberg, Matthias Mallonn, Caroline V Morley, Norio Narita, Valerio Nascimbeni, Enric Pallé, Elisa V Quintana, Emily Rauscher, Sara Seager, Evgenya L Shkolnik, David K Sing, Alessandro Sozzetti, Keivan G Stassun, Jeff A Valenti, Carolina von Essen

Abstract:

A key legacy of the recently launched the Transiting Exoplanet Survey Satellite (TESS) mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. The James Webb Space Telescope (JWST), although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based extremely large telescopes (ELTs) will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al., we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ~300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.