Corrigendum: Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids.

Nature communications 6 (2015) 7192

Authors:

Jan Lipfert, Matthew Wiggin, Jacob WJ Kerssemakers, Francesco Pedaci, Nynke H Dekker

Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase.

Cell reports 10:6 (2015) 983-992

Authors:

David Dulin, Igor D Vilfan, Bojk A Berghuis, Susanne Hage, Dennis H Bamford, Minna M Poranen, Martin Depken, Nynke H Dekker

Abstract:

RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage Φ6 RNA-dependent RNA polymerase. We extract large datasets fingerprinting real-time polymerase dynamics over four magnitudes in time, in the presence of nucleotide analogs, and under varying NTP and divalent cation concentrations and fork stability. Quantitative analysis reveals a new pause state that modulates polymerase fidelity and so ties viral polymerase pausing to the biological function of optimizing virulence. Adjusting the frequency of such pauses offers a target for therapeutics and may also reflect an evolutionary strategy for virus populations to track the gradual evolution of their hosts.

Torque spectroscopy for the study of rotary motion in biological systems.

Chemical reviews 115:3 (2015) 1449-1474

Authors:

Jan Lipfert, Maarten M van Oene, Mina Lee, Francesco Pedaci, Nynke H Dekker

Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes.

PloS one 10:10 (2015) e0141267

Authors:

Rifka Vlijm, Mina Lee, Orkide Ordu, Anastasiya Boltengagen, Alexandra Lusser, Nynke H Dekker, Cees Dekker

Abstract:

Eukaryotic nucleosomes consists of an (H3-H4)2 tetramer and two H2A-H2B dimers, around which 147 bp of DNA are wrapped in 1.7 left-handed helical turns. During chromatin assembly, the (H3-H4)2 tetramer binds first, forming a tetrasome that likely constitutes an important intermediate during ongoing transcription. We recently showed that (H3-H4)2 tetrasomes spontaneously switch between a left- and right-handed wrapped state of the DNA, a phenomenon that may serve to buffer changes in DNA torque induced by RNA polymerase in transcription. Within nucleosomes of actively transcribed genes, however, canonical H3 is progressively replaced by its variant H3.3. Consequently, one may ask if and how the DNA chirality dynamics of tetrasomes is altered by H3.3. Recent findings that H3.3-containing nucleosomes result in less stable and less condensed chromatin further underline the need to study the microscopic underpinnings of H3.3-containing tetrasomes and nucleosomes. Here we report real-time single-molecule studies of (H3.3-H4)2 tetrasome dynamics using Freely Orbiting Magnetic Tweezers and Electromagnetic Torque Tweezers. We find that the assembly of H3.3-containing tetrasomes and nucleosomes by the histone chaperone Nucleosome Assembly Protein 1 (NAP1) occurs in an identical manner to that of H3-containing tetrasomes and nucleosomes. Likewise, the flipping behavior of DNA handedness in tetrasomes is not impacted by the presence of H3.3. We also examine the effect of free NAP1, H3.3, and H4 in solution on flipping behavior and conclude that the probability for a tetrasome to occupy the left-handed state is only slightly enhanced by the presence of free protein. These data demonstrate that the incorporation of H3.3 does not alter the structural dynamics of tetrasomes, and hence that the preferred incorporation of this histone variant in transcriptionally active regions does not result from its enhanced ability to accommodate torsional stress, but rather may be linked to specific chaperone or remodeler requirements or communication with the nuclear environment.

Essential validation methods for E. coli strains created by chromosome engineering.

Journal of biological engineering 9 (2015) 11

Authors:

Sriram Tiruvadi Krishnan, M Charl Moolman, Theo van Laar, Anne S Meyer, Nynke H Dekker

Abstract:

Background

Chromosome engineering encompasses a collection of homologous recombination-based techniques that are employed to modify the genome of a model organism in a controlled fashion. Such techniques are widely used in both fundamental and industrial research to introduce multiple insertions in the same Escherichia coli strain. To date, λ-Red recombination (also known as recombineering) and P1 phage transduction are the most successfully implemented chromosome engineering techniques in E. coli. However, due to errors that can occur during the strain creation process, reliable validation methods are essential upon alteration of a strain's chromosome.

Results and discussion

Polymerase chain reaction (PCR)-based methods and DNA sequence analysis are rapid and powerful methods to verify successful integration of DNA sequences into a chromosome. Even though these verification methods are necessary, they may not be sufficient in detecting all errors, imposing the requirement of additional validation methods. For example, as extraneous insertions may occur during recombineering, we highlight the use of Southern blotting to detect their presence. These unwanted mutations can be removed via transducing the region of interest into the wild type chromosome using P1 phages. However, in doing so one must verify that both the P1 lysate and the strains utilized are free from contamination with temperate phages, as these can lysogenize inside a cell as a large plasmid. Thus, we illustrate various methods to probe for temperate phage contamination, including cross-streak agar and Evans Blue-Uranine (EBU) plate assays, whereby the latter is a newly reported technique for this purpose in E. coli. Lastly, we discuss methodologies for detecting defects in cell growth and shape characteristics, which should be employed as an additional check.

Conclusion

The simple, yet crucial validation techniques discussed here can be used to reliably verify any chromosomally engineered E. coli strains for errors such as non-specific insertions in the chromosome, temperate phage contamination, and defects in growth and cell shape. While techniques such as PCR and DNA sequence verification should standardly be performed, we illustrate the necessity of performing these additional assays. The discussed techniques are highly generic and can be easily applied to any type of chromosome engineering.