Versatile Multilayer Metamaterial Nanoparticles with Tailored Optical Constants for Force and Torque Transduction.

ACS nano 14:11 (2020) 14895-14906

Authors:

Ying Tang, Seungkyu Ha, Thomas Begou, Julien Lumeau, H Paul Urbach, Nynke H Dekker, Aurèle JL Adam

Abstract:

The ability to apply force and torque directly to micro- and nanoscale particles in optical traps has a wide range of applications. While full control of both force and torque in three dimensions has been realized using top-down fabrication of rod-shaped particles composed of birefringent crystalline materials, widespread usage of such particles is limited as the optical constants of the predominant birefringent materials (quartz SiO2 and rutile TiO2) preclude coverage of the full application space of optical trapping. Here, we show that multilayer metamaterial nanoparticles provide access to a wide range of optical constants that can be specifically tuned for each application. Selecting the material pair Nb2O5/SiO2 from the library of amorphous dielectrics as our metamaterial, we show that its refractive index and birefringence can be designed by adapting the ratio of layer thicknesses. Using a robust top-down fabrication process, we show that uniformly sized, free-floating Nb2O5/SiO2 particles with high birefringence at moderate refractive index are obtained at high yield. Using an optical torque wrench, we show that these particles function as joint force and torque transducers while maintaining excellent stability in aqueous solutions and can be controllably optimized for particular physical characteristics such as maximal torque transfer or rapid response time. We expect that such customizable birefringent metamaterial nanoparticles whose properties surpass those of conventional crystalline particles will provide a means to unleash the full potential of optical trapping applications.

Chromatin fibers stabilize nucleosomes under torsional stress.

Nature communications 11:1 (2020) 126

Authors:

Artur Kaczmarczyk, He Meng, Orkide Ordu, John van Noort, Nynke H Dekker

Abstract:

Torsional stress generated during DNA replication and transcription has been suggested to facilitate nucleosome unwrapping and thereby the progression of polymerases. However, the propagation of twist in condensed chromatin remains yet unresolved. Here, we measure how force and torque impact chromatin fibers with a nucleosome repeat length of 167 and 197. We find that both types of fibers fold into a left-handed superhelix that can be stabilized by positive torsion. We observe that the structural changes induced by twist were reversible, indicating that chromatin has a large degree of elasticity. Our direct measurements of torque confirmed the hypothesis of chromatin fibers as a twist buffer. Using a statistical mechanics-based torsional spring model, we extracted values of the chromatin twist modulus and the linking number per stacked nucleosome that were in good agreement with values measured here experimentally. Overall, our findings indicate that the supercoiling generated by DNA-processing enzymes, predicted by the twin-supercoiled domain model, can be largely accommodated by the higher-order structure of chromatin.

Induced copy-back RNA synthesis as a novel therapeutic mechanism against RNA viruses

(2020)

Authors:

Richard Janissen, Andrew Woodman, Kuo-Ming Lee, Ibrahim Moustafa, Fiona Fitzgerald, Peng-Nien Huang, Louis Kuijpers, Angela Perkins, Daniel Harki, Jamie Arnold, Belen Solano, Shin-Ru Shih, Craig Cameron, Nynke Dekker

DNA Sequence Is a Major Determinant of Tetrasome Dynamics.

Biophysical journal 117:11 (2019) 2217-2227

Authors:

Orkide Ordu, Alexandra Lusser, Nynke H Dekker

Abstract:

Eukaryotic genomes are hierarchically organized into protein-DNA assemblies for compaction into the nucleus. Nucleosomes, with the (H3-H4)2 tetrasome as a likely intermediate, are highly dynamic in nature by way of several different mechanisms. We have recently shown that tetrasomes spontaneously change the direction of their DNA wrapping between left- and right-handed conformations, which may prevent torque buildup in chromatin during active transcription or replication. DNA sequence has been shown to strongly affect nucleosome positioning throughout chromatin. It is not known, however, whether DNA sequence also impacts the dynamic properties of tetrasomes. To address this question, we examined tetrasomes assembled on a high-affinity DNA sequence using freely orbiting magnetic tweezers. In this context, we also studied the effects of mono- and divalent salts on the flipping dynamics. We found that neither DNA sequence nor altered buffer conditions affect overall tetrasome structure. In contrast, tetrasomes bound to high-affinity DNA sequences showed significantly altered flipping kinetics, predominantly via a reduction in the lifetime of the canonical state of left-handed wrapping. Increased mono- and divalent salt concentrations counteracted this behavior. Thus, our study indicates that high-affinity DNA sequences impact not only the positioning of the nucleosome but that they also endow the subnucleosomal tetrasome with enhanced conformational plasticity. This may provide a means to prevent histone loss upon exposure to torsional stress, thereby contributing to the integrity of chromatin at high-affinity sites.

Single-Crystal Rutile TiO2 Nanocylinders are Highly Effective Transducers of Optical Force and Torque.

ACS photonics 6:5 (2019) 1255-1265

Authors:

Seungkyu Ha, Ying Tang, Maarten M van Oene, Richard Janissen, Roland M Dries, Belen Solano, Aurèle JL Adam, Nynke H Dekker

Abstract:

Optical trapping of (sub)micron-sized particles is broadly employed in nanoscience and engineering. The materials commonly employed for these particles, however, have physical properties that limit the transfer of linear or angular momentum (or both). This reduces the magnitude of forces and torques, and the spatiotemporal resolution, achievable in linear and angular traps. Here, we overcome these limitations through the use of single-crystal rutile TiO2, which has an exceptionally large optical birefringence, a high index of refraction, good chemical stability, and is amenable to geometric control at the nanoscale. We show that rutile TiO2 nanocylinders form powerful joint force and torque transducers in aqueous environments by using only moderate laser powers to apply nN·nm torques at kHz rotational frequencies to tightly trapped particles. In doing so, we demonstrate how rutile TiO2 nanocylinders outperform other materials and offer unprecedented opportunities to expand the control of optical force and torque at the nanoscale.