Top quark mass measurement in the tt̄ all hadronic channel using a matrix element technique in pp̄ collisions at s=1.96TeV
Physical Review D - Particles, Fields, Gravitation and Cosmology 79:7 (2009)
Abstract:
We present a measurement of the top quark mass in the all hadronic channel (tt̄→bb̄q1q̄2q3q̄4) using 943pb-1 of pp̄ collisions at s=1.96TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix element (ME) to tt̄ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1±3.7(stat+JES)±2.1(syst)GeV/c2. The combined uncertainty on the top quark mass is 4.3GeV/c2. © 2009 The American Physical Society.Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays
(2009)
Galaxy Zoo: The properties of merging galaxies in the nearby Universe - local environments, colours, masses, star-formation rates and AGN activity
ArXiv 0903.5057 (2009)
Abstract:
Following the study of Darg et al. (2009; hereafter D09a) we explore the environments, optical colours, stellar masses, star formation and AGN activity in a sample of 3003 pairs of merging galaxies drawn from the SDSS using visual classifications from the Galaxy Zoo project. While D09a found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must, therefore, arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star-formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being `over-observed' in mergers. We also suggest that the transition mass $3\times10^{10}{M}_{\astrosun}$, noted by \citet{kauffmann1}, below which ellipticals are rare could be linked to disc survival/destruction in mergers.Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies
ArXiv 0903.4937 (2009)