Tomographic constraints on the high-energy cosmic neutrino emission rate
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 546:3 (2026) stag084
Abstract:
ABSTRACT Despite growing efforts to find the sources of high-energy neutrinos measured by IceCube, the bulk of the neutrinos remain with unknown origins. In this work, we aim to constrain the emissivity of cosmic high-energy neutrinos from extragalactic sources through their correlation with the large-scale structure. We use cross-correlations between the IceCube 10-year data set and tomographic maps of the galaxy overdensity to place constraints on the bias-weighted high-energy neutrino emissivity out to redshift $z\sim 3$. We test two different models to describe the evolution of neutrino emissivity with redshift, a power-law model $\propto (1+z)^a$, and a model tracking the star formation history, assuming a simple power-law model for the energy injection spectrum. We also consider a non-parametric reconstruction of the astrophysical neutrino emissivity as a function of redshift. We do not find any significant correlation, with our strongest results corresponding to a $1.9 \sigma$ deviation with respect to a model with zero signal. We use our measurements to place upper bounds on the bias-weighted astrophysical high-energy neutrino emission rate as a function of redshift for different source models. This analysis provides a new probe to test extragalactic neutrino source models. With future neutrino and galaxy data sets, we expect the constraining and detection power of this type of analysis to increase.The odyssey of the black hole low mass X-ray binary GX 339–4: Five years of dense multi-wavelength monitoring.
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag139
Abstract:
Abstract We present the longest and the densest quasi-simultaneous radio, X-ray and optical campaign of the black hole low mass X-ray binary GX 339–4, covering five years of weekly GX 339–4 monitoring with MeerKAT, Swift/XRT and MeerLICHT, respectively. Complementary high frequency radio data with the Australia Telescope Compact Array are presented to track in more detail the evolution of GX 339–4 and its transient ejecta. During the five years, GX 339–4 has been through two ‘hard-only’ outbursts and two ‘full’ outbursts, allowing us to densely sample the rise, quenching and re-activation of the compact jets. Strong radio flares were also observed close to the transition between the hard and the soft states. Following the radio flare, a transient optically thin ejection was spatially resolved during the 2020 outburst, and was observed for a month. We also discuss the radio/X-ray correlation of GX 339–4 during this five year period, which covers several states in detail from the rising phase to the quiescent state. This campaign allowed us to follow ejection events and provide information on the jet proper motion and its intrinsic velocity. With this work we publicly release the weekly MeerKAT L-band radio maps from data taken between September 2018 and October 2023.Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century
(2026)
Evidence of mutually exclusive outflow forms from a black hole X-ray binary
(2026)
The odyssey of the black hole low mass X-ray binary GX339-4: Five years of dense multi-wavelength monitoring
(2026)