First Constraints from Marked Angular Power Spectra with Subaru Hyper Suprime-Cam Survey First-Year Data

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag033

Authors:

Jessica A Cowell, Joaquin Armijo, Leander Thiele, Gabriela A Marques, Camila P Novaes, Daniela Grandón, Sihao Cheng, Masato Shirasaki, David Alonso, Jia Liu

Abstract:

Abstract We present the first application of marked power spectra to weak lensing data, using maps from the Subaru Hyper Suprime-Cam Year 1 (HSC-Y1) survey. Marked convergence fields, constructed by weighting the convergence field with non-linear functions of its smoothed version, are designed to encode higher-order information while remaining computationally tractable. Using simulations tailored to the HSC-Y1 data, we test three mark functions that up- or down-weight different density environments. Our results show that combining multiple types of marked auto- and cross-spectra improves constraints on the clustering amplitude parameter $S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}$ by ≈43 percnt compared to standard two-point power spectra. When applied to the HSC-Y1 data, this translates into a constraint on S8 = 0.807 ± 0.024. We assess the sensitivity of the marked power spectra to systematics, including baryonic effects, intrinsic alignment, photometric redshifts, and multiplicative shear bias. We note that some of the additional information introduced by the marked field originates from scales smaller than the scale cut, and is partly Gaussian in nature. This does not invalidate our systematic tests. These results demonstrate the promise of marked statistics as a practical and powerful tool for extracting non-Gaussian information from weak lensing surveys.

Large-scale radio bubbles around the black hole transient V4641 Sgr

Astronomy & Astrophysics EDP Sciences (2026)

Authors:

N Grollimund, S Corbel, R Fender, JH Matthews, I Heywood, FJ Cowie, AK Hughes, F Carotenuto, SE Motta, P Woudt

Abstract:

Black holes (BHs) in microquasars can launch powerful relativistic jets that have the capacity to travel up to several parsecs from the compact object and interact with the interstellar medium. Recently, the detection of large-scale very-high-energy (VHE) gamma-ray emission around the black hole transient V4641 Sgr and other BH-jet systems suggested that jets from microquasars may play an important role in the production of galactic cosmic rays. V4641 Sgr is known for its superluminal radio jet discovered in 1999, but no radio counterpart of a large-scale jet has been observed. The goal of this work is to search for a radio counterpart of the extended VHE source. We observed V4641 Sgr with the MeerKAT radio telescope at the and bands and produced deep maps of the field using high dynamic range techniques. L UHF We report the discovery of a large-scale (∼ 35 ), bow-tie-shaped, diffuse, radio structure around V4641 Sgr, with similar angular size to the extended X-ray emission discovered by XRISM. However, it is not spatially coincident with the extended VHE emission. After discussing the association of the structure with V4641 Sgr, we investigate the nature of the emission mechanism. We suggest that the bow-tie structure arose from the long-term action of large-scale jets or disk winds from V4641 Sgr. If the emission mechanism is of synchrotron origin, the radio/X-ray extended structure implies acceleration of electrons up to more than 100 as far as tens of parsecs from the black hole. pc TeV

Large-scale radio bubbles around the black hole transient V4641 Sgr

(2026)

Authors:

Noa Grollimund, Stà phane Corbel, Rob Fender, James H Matthews, Ian Heywood, Fraser J Cowie, Andrew K Hughes, Francesco Carotenuto, Sara E Motta, Patrick Woudt

Evidence of mutually exclusive outflow forms from a black hole X-ray binary

Nature Astronomy (2026) 1-9

Authors:

Zuobin Zhang, Jiachen Jiang, Francesco Carotenuto, Honghui Liu, Cosimo Bambi, Rob P Fender, Andrew J Young, Jakob van den Eijnden, Christopher S Reynolds, Andrew C Fabian, Julien N Girard, Joey Neilsen, James F Steiner, John A Tomsick, Stéphane Corbel, Andrew K Hughes

Abstract:

Accretion onto black holes often leads to the launch of outflows that substantially influence their surrounding environments. The two primary forms of these outflows are X-ray disk winds—hot, ionized gases ejected from the accretion disk—and relativistic jets, which are collimated streams of particles often expelled along the rotational axis of the black hole. While previous studies have revealed a general association between spectral states and different types of outflow, the physical mechanisms governing wind and jet formation remain debated. Here, using coordinated NICER and MeerKAT observations of the recurrent black hole X-ray binary 4U 1630–472, we identify a clear anti-correlation between X-ray disk winds and jets: during three recent outbursts, only one type of outflow is detected at a time. Notably, this apparent exclusivity occurs even as the overall accretion luminosity remains within the range expected for a standard thin disk, characteristic of the canonical soft state. These results suggest a competition between outflow channels that may depend on how the accretion energy is partitioned between the disk and the corona. Our findings provide observational constraints on jet and wind formation in X-ray binaries and offer a fresh perspective on the interplay between different modes of accretion-driven feedback.

A Young Supernova Selection Pipeline For The LSST Era

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2278

Authors:

Harry Addison, Chris Frohmaier, Kate Maguire, Robert C Nichol, Isobel Hook, Stephen J Smartt

Abstract:

Abstract Early-time spectroscopy of supernovae (SNe), acquired within days of explosion, yields crucial insights into their outermost ejecta layers, facilitating the study of their environments, progenitor systems, and explosion mechanisms. Recent efforts in early discovery and follow-up of SNe have shown the potential insights that can be gained from early-time spectra. Surveys such as the Time-Domain Extragalactic Survey (TiDES), conducted with the 4-meter Multi-Object Spectroscopic Telescope (4MOST), will provide spectroscopic follow-up of transients discovered by the Legacy Survey of Space and Time (LSST). Current simulations indicate that early-time spectroscopic studies conducted with TiDES data will be limited by the current SN selection criteria. To enhance early-time SN spectroscopic studies from TiDES-like surveys, we propose a set of selection criteria focusing on young SNe (YSNe), which we define as SNe prior to −10 days before peak brightness. Utilising the Zwicky Transient Facility transient alerts, we developed criteria to select YSNe while minimising the sample’s contamination rate to 23percnt. The developed criteria were applied to LSST simulations, yielding a sample of 694 Deep Drilling Field survey SNe and 56260 Wide Fast Deep survey SNe for follow-up. We demonstrate that our criteria enables the selection of SNe at early-times, enhancing future early-time spectroscopic SN studies from TiDES-like surveys. Finally, we investigated 4MOST-like observing strategies to increase the sample of spectroscopically observed YSNe. We propose that a 4MOST-like observing strategy that follows LSST with a delay of 3 days is optimal for a TiDES-like SN survey in terms of the number of classifiable spectra obtained, while a 1 day delay is most optimal for enhancing the early-time science in conjunction with our YSN selection criteria.