Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport.

Physical review letters 128:20 (2022) 201302

Authors:

Sebastian von Hausegger, Bruno Lévy, Roya Mohayaee

Abstract:

Optimal transport theory has recently re-emerged as a vastly resourceful field of mathematics with elegant applications across physics and computer science. Harnessing methods from geometry processing, we report on the efficient implementation for a specific problem in cosmology-the reconstruction of the linear density field from low redshifts, in particular the recovery of the baryonic acoustic oscillation (BAO) scale. We demonstrate our algorithm's accuracy by retrieving the BAO scale in noiseless cosmological simulations that are dedicated to cancel cosmic variance; we find uncertainties to be reduced by a factor of 4.3 compared with performing no reconstruction, and a factor of 3.1 compared with standard reconstruction.

Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1175-1198

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Caroline Foster, Benne W Holwerda, Matt Jarvis, Steven Phillipps, Malgorzata Siudek, Jessica E Thorne, Rogier A Windhorst, Christian Wolf

Abstract:

We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 < z < 1, and stellar mass log10(M∗/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the profit code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼ 60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼ 30 per cent at z = 0.0 (representing ∼ 33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe's timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth.

The Sensitivity of GPz Estimates of Photo-z Posterior PDFs to Realistically Complex Training Set Imperfections

Publications of the Astronomical Society of the Pacific, Volume 134, Number 1034

Authors:

Natalia Stylianou, Alex I. Malz , Peter Hatfield, John Franklin Crenshaw, and Julia Gschwend

Abstract:

The accurate estimation of photometric redshifts is crucial to many upcoming galaxy surveys, for example, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Almost all Rubin extragalactic and cosmological science requires accurate and precise calculation of photometric redshifts; many diverse approaches to this problem are currently in the process of being developed, validated, and tested. In this work, we use the photometric redshift code GPz to examine two realistically complex training set imperfections scenarios for machine learning based photometric redshift calculation: (i) where the spectroscopic training set has a very different distribution in color–magnitude space to the test set, and (ii) where the effect of emission line confusion causes a fraction of the training spectroscopic sample to not have the true redshift. By evaluating the sensitivity of GPz to a range of increasingly severe imperfections, with a range of metrics (both of photo-z point estimates as well as posterior probability distribution functions, PDFs), we quantify the degree to which predictions get worse with higher degrees of degradation. In particular, we find that there is a substantial drop-off in photo-z quality when line-confusion goes above ∼1%, and sample incompleteness below a redshift of 1.5, for an experimental setup using data from the Buzzard Flock synthetic sky catalogs.

The science case and challenges of space-borne sub-millimeter interferometry

(2022)

Authors:

Leonid I Gurvits, Zsolt Paragi, Ricardo I Amils, Ilse van Bemmel, Paul Boven, Viviana Casasola, John Conway, Jordy Davelaar, M Carmen Díez-González, Heino Falcke, Rob Fender, Sándor Frey, Christian M Fromm, Juan D Gallego-Puyol, Cristina García-Miró, Michael A Garrett, Marcello Giroletti, Ciriaco Goddi, José L Gómez, Jeffrey van der Gucht, José Carlos Guirado, Zoltán Haiman, Frank Helmich, Ben Hudson, Elizabeth Humphreys, Violette Impellizzeri, Michael Janssen, Michael D Johnson, Yuri Y Kovalev, Michael Kramer, Michael Lindqvist, Hendrik Linz, Elisabetta Liuzzo, Andrei P Lobanov, Isaac López-Fernández, Inmaculada Malo-Gómez, Kunal Masania, Yosuke Mizuno, Alexander V Plavin, Raj T Rajan, Luciano Rezzolla, Freek Roelofs, Eduardo Ros, Kazi LJ Rygl, Tuomas Savolainen, Karl Schuster, Tiziana Venturi, Marjolein Verkouter, Pablo de Vicente, Pieter NAM Visser, Martina C Wiedner, Maciek Wielgus, Kaj Wiik, J Anton Zensus

A new look at local ultraluminous infrared galaxies: the atlas and radiative transfer models of their complex physics

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 512:4 (2022) 5183-5213

Authors:

A Efstathiou, D Farrah, J Afonso, DL Clements, E González-Alfonso, M Lacy, S Oliver, V Papadopoulou Lesta, C Pearson, D Rigopoulou, M Rowan-Robinson, HWW Spoon, A Verma, L Wang