Determination of the parton distribution functions of the proton from ATLAS measurements of differential W± and Z boson production in association with jets
JHEP Reports Elsevier 2021:7 (2021) 223
Abstract:
This article presents a new set of proton parton distribution functions, ATLASepWZVjet20, produced in an analysis at next-to-next-to-leading order in QCD. The new data sets considered are the measurements of W+ and W− boson and Z boson production in association with jets in pp collisions at 𝑠√ = 8 TeV performed by the ATLAS experiment at the LHC with integrated luminosities of 20.2 fb−1 and 19.9 fb−1, respectively. The analysis also considers the ATLAS measurements of differential W± and Z boson production at 𝑠√ = 7 TeV with an integrated luminosity of 4.6 fb−1 and deep-inelastic-scattering data from e±p collisions at the HERA accelerator. An improved determination of the sea-quark densities at high Bjorken x is shown, while confirming a strange-quark density similar in size to the up- and down-sea-quark densities in the range x ≲ 0.02 found by previous ATLAS analyses.Constraints on the presence of platinum and gold in the spectra of the kilonova AT2017gfo
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 506:3 (2021) 3560-3577
MIGHTEE-HI: discovery of an H I-rich galaxy group at z = 0.044 with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 2753-2765
Abstract:
We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. 20 galaxies are detected in H I in this z ∼ 0.044 group, with a 3σ column density sensitivity of NHI=1.6×1020cm−2. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially resolved H I total intensity and velocity maps for each of the objects which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of log10(Mdyn/M⊙)=12.32, and is unusually gas-rich, with an H I-to-stellar mass ratio of log10(f∗HI)=−0.2, which is 0.7 dex greater than expected. The group’s high H I content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially resolved H I in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.Probing the Progenitors of Type Ia Supernovae using Circumstellar Material Interaction Signatures
(2021)
Evolution of the galaxy stellar mass function: evidence for an increasing M* from z = 2 to the present day
Monthly Notices of the Royal Astronomical Society Oxford University Press 506:4 (2021) 4933-4951