The Arcminute Microkelvin Imager Catalogue of Gamma-ray Burst afterglows at 15.7 GHz

(2017)

Authors:

GE Anderson, TD Staley, AJ van der Horst, RP Fender, A Rowlinson, KP Mooley, JW Broderick, RAMJ Wijers, C Rumsey, DJ Titterington

Up and Down the Black Hole Radio/X-ray Correlation: the 2017 mini-outbursts from Swift J1753.5-0127

(2017)

Authors:

RM Plotkin, J Bright, JCA Miller-Jones, AW Shaw, JA Tomsick, TD Russell, G-B Zhang, DM Russell, RP Fender, J Homan, P Atri, F Bernardini, JD Gelfand, F Lewis, TM Cantwell, SH Carey, KJB Grainge, J Hickish, YC Perrott, N Razavi-Ghods, AMM Scaife, PF Scott, DJ Titterington

Paving the way to simultaneous multi-wavelength astronomy

(2017)

Authors:

MJ Middleton, P Casella, P Gandhi, E Bozzo, G Anderson, N Degenaar, I Donnarumma, G Israel, C Knigge, A Lohfink, S Markoff, T Marsh, N Rea, S Tingay, K Wiersema, D Altamirano, D Bhattacharya, WN Brandt, S Carey, P Charles, M Diaz Trigo, C Done, M Kotze, S Eikenberry, R Fender, P Ferruit, F Fuerst, J Greiner, A Ingram, L Heil, P Jonker, S Komossa, B Leibundgut, T Maccarone, J Malzac, V McBride, J Miller-Jones, M Page, EM Rossi, DM Russell, T Shahbaz, GR Sivakoff, M Tanaka, DJ Thompson, M Uemura, P Uttley, G van Moorsel, M Van Doesburgh, B Warner, B Wilkes, J Wilms, P Woudt

The KMOS Cluster Survey (KCS). I. The fundamental plane and the formation ages of cluster galaxies at redshift 1.4 < Z < 1.6

Astrophysical Journal American Astronomical Society 846:2 (2017) 1-25

Authors:

A Beifiori, JT Mendel, JCC Chan, RP Saglia, R Bender, Michele Cappellari, Roger L Davies, A Galametz, Ryan CW Houghton, Laura J Prichard, R Smith, John P Stott, DJ Wilman, Ian J Lewis, R Sharples, M Wegner

Abstract:

The American Astronomical Society. All rights reserved. We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M· > ×4 10 10 M·) in three known overdensities at 1.39 1.61 < < z from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to -0.10±0.09, -0.19±0.05, and -0.29±0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (log 1 M M· > 1) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding D log 0.46 0.10 M L z B = - (D log )0.52 0.07 M L z B = -to(D log ) 0.55 0.10 M L z B = - respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ∼6%-35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33- +0.51 0.86 Gyr for the log 1 M M· > 1 galaxies in our massive and virialized cluster at z = 1.39,1.59- +0.62 1.40 Gyr in a massive but not virialized cluster at z = 1.46, and 1.20- +0.47 1.03 Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older.

Measurement of the thermal Sunyaev-Zel'dovich effect around cosmic voids

(2017)

Authors:

David Alonso, J Colin Hill, Renée Hložek, David N Spergel