Search for the Exotic Meson X(5568) with the Collider Detector at Fermilab
Physical Review Letters American Physical Society (APS) 120:20 (2018) 202006
The VANDELS ESO public spectroscopic survey
Monthly Notices of the Royal Astronomical Society Oxford University Press 479:1 (2018) 25-42
Abstract:
VANDELS is a uniquely deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO'sVery Large Telescope (VLT). The survey has obtained ultradeep optical (0.48 < ? < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0≤z≤ 7.0, over a total area of ≃0.2 deg2centred on the CANDELS Ultra Deep Survey and Chandra Deep Field South fields. Based on accurate photometric redshift pre-selection, 85 per cent of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high-signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities, and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-tonoise ratio (20>tint>80 h), theVANDELS survey targeted: (a) bright star-forming galaxies at 2.4≤z≤5.5, (b) massive quiescent galaxies at 1.0≤z≤2.5, (c) fainter star-forming galaxies at 3.0≤z≤7.0, and (d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multiwavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper, we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design, and target selection.The lowest metallicity type II supernova from the highest mass red-supergiant progenitor
(2018)
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
Journal of Low Temperature Physics (2018) 1-9
Abstract:
© 2018 Springer Science+Business Media, LLC, part of Springer Nature Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments
Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190