A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population

(2017)

Authors:

CJ Law, MW Abruzzo, CG Bassa, GC Bower, S Burke-Spolaor, BJ Butler, T Cantwell, SH Carey, S Chatterjee, JM Cordes, P Demorest, J Dowell, R Fender, K Gourdji, K Grainge, JWT Hessels, J Hickish, VM Kaspi, TJW Lazio, MA McLaughlin, D Michilli, K Mooley, YC Perrott, SM Ransom, N Razavi-Ghods, M Rupen, A Scaife, P Scott, P Scholz, A Seymour, LG Spitler, K Stovall, SP Tendulkar, D Titterington, RS Wharton, PKG Williams

Galaxy And Mass Assembly (GAMA): The environments of high- and low-excitation radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:4 (2017) 4584-4599

Authors:

JHY Ching, SM Croom, EM Sadler, ASG Robotham, S Brough, IK Baldry, J Bland-Hawthorn, M Colless, SP Driver, BW Holwerda, AM Hopkins, Matthew Jarvis, HM Johnston, LS Kelvin, J Liske, J Loveday, P Norberg, MB Pracy, O Steele, D Thomas, L Wang

Abstract:

We study the environments of low- and high- excitation radio galaxies (LERGs and HERGs respectively) in the redshift range $0.01 < z < 0.4$, using a sample of 399 radio galaxies and environmental measurements from the Galaxy And Mass Assembly (GAMA) survey. In our analysis we use the fifth nearest neighbour density ($\Sigma_{5}$) and the GAMA galaxy groups catalogue (G3Cv6) and construct control samples of galaxies matched in {\update stellar mass and colour} to the radio-detected sample. We find that LERGs and HERGs exist in different environments and that this difference is dependent on radio luminosity. High-luminosity LERGs ($L_{\rm NVSS} \gtrsim 10^{24}$ W Hz$^{-1}$) lie in much denser environments than a matched radio-quiet control sample (about three times as dense, as measured by $\Sigma_{5}$), and are more likely to be members of galaxy groups ($82^{+5}_{-7}$ percent of LERGs are in GAMA groups, compared to $58^{+3}_{-3}$ percent of the control sample). In contrast, the environments of the HERGs and lower luminosity LERGs are indistinguishable from that of a matched control sample. Our results imply that high-luminosity LERGs lie in more massive haloes than non-radio galaxies of similar stellar mass and colour, in agreement with earlier studies (Wake et al. 2008; Donoso et al. 2010). When we control for the preference of LERGs to be found in groups, both high- and low- luminosity LERGs are found in higher-mass haloes ($\sim 0.2$ dex; at least 97 percent significant) than the non-radio control sample.

Towards understanding the Planck thermal dust models

Physical Review D American Physical Society (APS) 95:10 (2017) 103517

Authors:

Hao Liu, Sebastian von Hausegger, Pavel Naselsky

Implications for the Origin of Early-type Dwarf Galaxies: A Detailed Look at the Isolated Rotating Early-type Dwarf Galaxy LEDA 2108986 (CG 611), Ramifications for the Fundamental Plane's S-K(2) Kinematic Scaling, and the Spin-Ellipticity Diagram

ASTROPHYSICAL JOURNAL 840:2 (2017) ARTN 68

Authors:

AW Graham, J Janz, SJ Penny, IV Chilingarian, BC Ciambur, DA Forbes, RL Davies

An Accuracy-Aware Implementation of Two-Point Three-Dimensional Correlation Function Using Bin-Recycling Strategy on GPU

Institute of Electrical and Electronics Engineers (IEEE) (2017) 913-920

Authors:

Iván Méndez-Jiménez, Miguel Cárdenas-Montes, Juan José Rodríguez-Vázquez, Ignacio Sevilla-Noarbe, Eusebio Sánchez Álvaro, David Alonso, Miguel A Vega-Rodríguez