The SAMI Galaxy Survey: global stellar populations on the size-mass plane

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 472:3 (2017) 2833-2855

Authors:

N Scott, S Brough, SM Croom, RL Davies, J van de Sande, JT Allen, J Bland-Hawthorn, JJ Bryant, L Cortese, F D'Eugenio, C Federrath, I Ferreras, M Goodwin, B Groves, I Konstantopoulos, JS Lawrence, AM Medling, AJ Moffett, MS Owers, S Richards, ASG Robotham, C Tonini, SK Yi

Improving Photometric Redshift Estimation using GPz: size information, post processing and improved photometry

Monthly Notices of the Royal Astronomical Society Oxford University Press 475:1 (2017) 331-342

Authors:

Zahra Gomes, Matthew Jarvis, Ibrahim A Almosallam, Stephen Roberts

Abstract:

The next generation of large scale imaging surveys (such as those conducted with the Large Synoptic Survey Telescope and Euclid) will require accurate photometric redshifts in order to optimally extract cosmological information. Gaussian Processes for photometric redshift estimation (GPz) is a promising new method that has been proven to provide efficient, accurate photometric redshift estimations with reliable variance predictions. In this paper, we investigate a number of methods for improving the photometric redshift estimations obtained using GPz (but which are also applicable to others). We use spectroscopy from the Galaxy and Mass Assembly Data Release 2 with a limiting magnitude of r<19.4 along with corresponding Sloan Digital Sky Survey visible (ugriz) photometry and the UKIRT Infrared Deep Sky Survey Large Area Survey near-IR (YJHK) photometry. We evaluate the effects of adding near-IR magnitudes and angular size as features for the training, validation and testing of GPz and find that these improve the accuracy of the results by ~15-20 per cent. In addition, we explore a post-processing method of shifting the probability distributions of the estimated redshifts based on their Quantile-Quantile plots and find that it improves the bias by ~40 per cent. Finally, we investigate the effects of using more precise photometry obtained from the Hyper Suprime-Cam Subaru Strategic Program Data Release 1 and find that it produces significant improvements in accuracy, similar to the effect of including additional features.

A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni

Science American Association for the Advancement of Science 358:6368 (2017)

Authors:

Y Dallilar, SS Eikenberry, A Garner, RD Stelter, A Gottlieb, P Gandhi, P Casella, VS Dhillon, TR Marsh, SP Littlefair, L Hardy, Robert Fender, Kunal Mooley, DJ Walton, F Fuerst, M Bachetti, AJ Castro-Tirado, M Charcos, ML Edwards, NM Lasso-Cabrera, A Marin-Franch, K Ackley, JG Bennett, AJ Cenarro, B Chinn, HV Donoso, R Frommeyer, K Hanna, J Julian, P Miller, S Mullin, CH Murphey, C Packham, F Varosi, C Vega, C Warner, AN Ramaprakash, M Burse, S Punnadi, P Chordia, A Gerarts, H De Paz Martín, MM Calero, R Scarpa, SF Acosta, B Siegel, FF Pérez

Abstract:

Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems.

Bias of Damped Lyman-$\alpha$ systems from their cross-correlation with CMB lensing

(2017)

Authors:

David Alonso, Joseph Colosimo, Andreu Font-Ribera, Anže Slosar

Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13 TeV pp collisions

Journal of High Energy Physics Springer Verlag 2017:12 (2017) 34

Abstract:

A search is presented for particles that decay producing a large jet multiplicity and invisible particles. The event selection applies a veto on the presence of isolated electrons or muons and additional requirements on the number of b-tagged jets and the scalar sum of masses of large-radius jets. Having explored the full ATLAS 2015–2016 dataset of LHC proton–proton collisions at √ s = 13 TeV, which corresponds to 36.1 fb−1 of integrated luminosity, no evidence is found for physics beyond the Standard Model. The results are interpreted in the context of simplified models inspired by R-parity-conserving and R-parity-violating supersymmetry, where gluinos are pair-produced. More generic models within the phenomenological minimal supersymmetric Standard Model are also considered.