Performance of the ATLAS forward proton Time-of-Flight detector in Run 2

Journal of Instrumentation IOP Publishing 19:05 (2024) P05054

Authors:

G Aad, E Aakvaag, B Abbott, K Abeling, NJ Abicht, SH Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, C Adam Bourdarios, L Adamczyk, SV Addepalli, MJ Addison, J Adelman, A Adiguzel, T Adye, AA Affolder, Y Afik, MN Agaras, J Agarwala, A Aggarwal, C Agheorghiesei

Abstract:

We present performance studies of the Time-of-Flight (ToF) subdetector of the ATLAS Forward Proton (AFP) detector at the LHC. Efficiencies and resolutions are measured using high-statistics data samples collected at low and moderate pile-up in 2017, the first year when the detectors were installed on both sides of the interaction region. While low efficiencies are observed, of the order of a few percent, the resolutions of the two ToF detectors measured individually are 21 ps and 28 ps, yielding an expected resolution of the longitudinal position of the interaction, z vtx, in the central ATLAS detector of 5.3 ± 0.6 mm. This is in agreement with the observed width of the distribution of the difference between z vtx, measured independently by the central ATLAS tracker and by the ToF detector, of 6.0 ± 2.0 mm.

Swift J1727.8-1613 has the Largest Resolved Continuous Jet Ever Seen in an X-ray Binary

(2024)

Authors:

Callan M Wood, James CA Miller-Jones, Arash Bahramian, Steven J Tingay, Steve Prabu, Thomas D Russell, Pikky Atri, Francesco Carotenuto, Diego Altamirano, Sara E Motta, Lucas Hyland, Cormac Reynolds, Stuart Weston, Rob Fender, Elmar Körding, Dipankar Maitra, Sera Markoff, Simone Migliari, David M Russell, Craig L Sarazin, Gregory R Sivakoff, Roberto Soria, Alexandra J Tetarenko, Valeriu Tudose

Constraints on dark matter and astrophysics from tomographic γ-ray cross-correlations

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 109 (2024) 103517

Authors:

Anya Paopiamsap, David Alonso, Deaglan Bartlett, Maciej Bilicki

Abstract:

We study the cross-correlation between maps of the unresolved 𝛾-ray background constructed from the 12-year data release of the Fermi Large-Area Telescope, and the overdensity of galaxies in the redshift range 𝑧≲0.4 as measured by the 2MASS photometric redshift survey and the WISE-SuperCOSMOS photometric survey. A signal is detected at the 8−10⁢𝜎 level, which we interpret in terms of both astrophysical 𝛾-ray sources, and weakly interacting massive particles (WIMP) dark matter decay and annihilation. The sensitivity achieved allows us to characterise the energy and redshift dependence of the signal, and we show that the latter is incompatible with a pure dark matter origin. We thus use our measurement to place an upper bound on the WIMP decay rate and the annihilation cross section, finding constraints that are competitive with those found in other analyses. Our analysis is based on the extraction of clean model-independent observables that can then be used to constrain arbitrary astrophysical and particle physics models. In this sense we produce measurements of the 𝛾-ray emissivity as a function of redshift and rest-frame energy 𝜖, and of a quantity 𝐹⁡(𝜖) encapsulating all WIMP parameters relevant for dark matter decay or annihilation. We make these measurements, together with a full account of their statistical uncertainties, publicly available.

Constraints on dark matter and astrophysics from tomographic γ -ray cross-correlations

Physical Review D American Physical Society (APS) 109:10 (2024) 103517

Authors:

Anya Paopiamsap, David Alonso, Deaglan J Bartlett, Maciej Bilicki

Abstract:

We study the cross-correlation between maps of the unresolved γ-ray background constructed from the 12-year data release of the Large-Area Telescope, and the overdensity of galaxies in the redshift range z0.4 as measured by the 2MASS photometric redshift survey and the WISE-SuperCOSMOS photometric survey. A signal is detected at the 810σ level, which we interpret in terms of both astrophysical γ-ray sources, and weakly interacting massive particles (WIMP) dark matter decay and annihilation. The sensitivity achieved allows us to characterise the energy and redshift dependence of the signal, and we show that the latter is incompatible with a pure dark matter origin. We thus use our measurement to place an upper bound on the WIMP decay rate and the annihilation cross section, finding constraints that are competitive with those found in other analyses. Our analysis is based on the extraction of clean model-independent observables that can then be used to constrain arbitrary astrophysical and particle physics models. In this sense we produce measurements of the γ-ray emissivity as a function of redshift and rest-frame energy ϵ, and of a quantity F(ϵ) encapsulating all WIMP parameters relevant for dark matter decay or annihilation. We make these measurements, together with a full account of their statistical uncertainties, publicly available. Published by the American Physical Society 2024

DEVILS/MIGHTEE/GAMA/DINGO: the impact of SFR time-scales on the SFR-radio luminosity correlation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:1 (2024) 708-727

Authors:

Robin HW Cook, Luke JM Davies, Jonghwan Rhee, Catherine L Hale, Sabine Bellstedt, Jessica E Thorne, Ivan Delvecchio, Jordan D Collier, Richard Dodson, Simon P Driver, Benne W Holwerda, Matt J Jarvis, Kenda Knowles, Claudia Lagos, Natasha Maddox, Martin Meyer, Aaron SG Robotham, Sambit Roychowdhury, Kristof Rozgonyi, Nicholas Seymour, Malgorzata Siudek, Matthew Whiting, Imogen Whittam