NGC 1266 as a local candidate for rapid cessation of star formation

Astrophysical Journal 780:2 (2014)

Authors:

K Alatalo, K Nyland, G Graves, S Deustua, KS Griffin, PA Duc, M Cappellari, RM McDermid, TA Davis, AF Crocker, LM Young, P Chang, N Scott, SL Cales, E Bayet, L Blitz, M Bois, F Bournaud, M Bureau, RL Davies, PT De Zeeuw, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, R Morganti, T Naab, T Oosterloo, M Sarzi, P Serra, AM Weijmans

Abstract:

We present new Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) integral-field spectroscopy and Swift Ultraviolet Optical Telescope (UVOT) observations of molecular outflow host galaxy NGC 1266 that indicate NGC 1266 has experienced a rapid cessation of star formation. Both the SAURON maps of stellar population age and the Swift UVOT observations demonstrate the presence of young (<1 Gyr) stellar populations within the central 1 kpc, while existing Combined Array for Research in Millimeter-Wave Astronomy CO(1-0) maps indicate that the sites of current star formation are constrained to only the inner few hundred parsecs of the galaxy. The optical spectrum of NGC 1266 from Moustakas & Kennicutt reveal a characteristic poststarburst (K+A) stellar population, and Davis et al. confirm that ionized gas emission in the system originate from a shock. Galaxies with K+A spectra and shock-like ionized gas line ratios may comprise an important, overlooked segment of the poststarburst population, containing exactly those objects in which the active galactic nucleus (AGN) is actively expelling the star-forming material. While AGN activity is not the likely driver of the poststarburst event that occurred 500 Myr ago, the faint spiral structure seen in the Hubble Space Telescope Wide-field Camera 3 Y-, J- and H-band imaging seems to point to the possibility of gravitational torques being the culprit. If the molecular gas were driven into the center at the same time as the larger scale galaxy disk underwent quenching, the AGN might be able to sustain the presence of molecular gas for ≳ 1 Gyr by cyclically injecting turbulent energy into the dense molecular gas via a radio jet, inhibiting star formation. © 2014. The American Astronomical Society. All rights reserved.

The second-generation z (redshift) and early universe spectrometer. I. First-light observation of a highly lensed local-ulirg analog at high-z

Astrophysical Journal 780:2 (2014)

Authors:

C Ferkinhoff, D Brisbin, S Parshley, T Nikola, GJ Stacey, J Schoenwald, JL Higdon, SJU Higdon, A Verma, D Riechers, S Hailey-Dunsheath, KM Menten, R Güsten, A Weiß, K Irwin, HM Cho, M Niemack, M Halpern, M Amiri, M Hasselfield, DV Wiebe, PAR Ade, CE Tucker

Abstract:

We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ∼ 1.8 from H-ATLAS J091043.1-000322 with a line flux of (6.44 ± 0.42) × 10-18 W m-2. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ∼ 2 × 104 G 0, gas density, n ∼ 1 × 103 cm-3 and size between ∼0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1-000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models. © 2014. The American Astronomical Society. All rights reserved.

The low or retrograde spin of the first extragalactic microquasar: implications for Blandford-Znajek powering of jets

(2014)

Authors:

Matthew Middleton, James Miller-Jones, Rob Fender

The Wide-field Infrared Survey Explorer properties of complete samples of radio-loud active galactic nucleus

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 438:2 (2014) 1149-1161

Authors:

G Gürkan, MJ Hardcastle, MJ Jarvis

The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

ArXiv 1401.0773 (2014)

Authors:

William C Keel, Anna M Manning, Benne W Holwerda, Chris J Lintott, Kevin Schawinski

Abstract:

(Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. This "grey" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. The extrapolation needed to compare attenution between backlit galaxies at moderate redshifts, and local systems from SDSS data, is mild enough to allow use of galaxy overlaps to trace the cosmic history of dust. For NGC 2207, the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the ultraviolet, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the ultraviolet. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations, at this spatial resolution.