Measuring the transition to homogeneity with photometric redshift surveys
(2013)
The Youngest Known X-ray Binary: Circinus X-1 and its Natal Supernova Remnant
(2013)
Herschel observations and a model for IRAS 08572+3915: A candidate for the most luminous infrared galaxy in the local (z < 0.2) Universe
Monthly Notices of the Royal Astronomical Society: Letters 437:1 (2013)
Abstract:
We present Herschel photometry and spectroscopy, carried out as part of the Herschel ultraluminous infrared galaxy (ULIRG) survey, and a model for the infrared to submillimetre emission of the ULIRG IRAS 08572+3915. This source shows one of the deepest known silicate absorption features and no polycyclic aromatic hydrocarbon emission. The model suggests that this object is powered by an active galactic nucleus (AGN) with a fairly smooth torus viewed almost edge-on and a very young starburst. According to our model, the AGN contributes about 90 per cent of the total luminosity of 1.1 × 1013 L⊙, which is about a factor of 5 higher than previous estimates. The large correction of the luminosity is due to theanisotropy of the emission of the best-fitting torus. Similar corrections may be necessary for other local and high-z analogues. This correction implies that IRAS 08572+3915 at a redshift of 0.058 35 may be the nearest hyperluminous infrared galaxy and probably the most luminous infrared galaxy in the local (z < 0.2) Universe. IRAS 08572+3915 shows a low ratio of [C II] to IR luminosity (log L[C II]/LIR < -3.8) and a [OI]63 μm to [CII]158 μm line ratio of about 1 that supports the model presented in this Letter ©2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Jet and underlying event properties as a function of charged-particle multiplicity in proton-proton collisions at √s = 7 TeV
European Physical Journal C 73:12 (2013) 1-26
Abstract:
Characteristics of multi-particle production in proton-proton collisions at √s = 7 TeV are studied as a function of the charged-particle multiplicity, N ch. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity {pipe}η{pipe}<2.4 and transverse momentum p T>0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have p T>5 GeV/c. The distributions of jet p T, average p T of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N ch and compared to the predictions of the pythia and herwig event generators. Predictions without multi-parton interactions fail completely to describe the N ch-dependence observed in the data. For increasing N ch, pythia systematically predicts higher jet rates and harder p T spectra than seen in the data, whereas herwig shows the opposite trends. At the highest multiplicity, the data-model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients. © 2013 CERN for the benefit of the CMS collaboration.Search for top-squark pair production in the single-lepton final state in pp collisions at √s = 8 TeV
European Physical Journal C 73:12 (2013) 1-46