Differential frequency-dependent delay from the pulsar magnetosphere

Astronomy and Astrophysics 552 (2013)

Authors:

TE Hassall, BW Stappers, P Weltevrede, JWT Hessels, A Alexov, T Coenen, A Karastergiou, M Kramer, EF Keane, VI Kondratiev, J Van Leeuwen, A Noutsos, M Pilia, M Serylak, C Sobey, K Zagkouris, R Fender, ME Bell, J Broderick, J Eislöffel, H Falcke, JM Grießmeier, M Kuniyoshi, JCA Miller-Jones, MW Wise, O Wucknitz, P Zarka, A Asgekar, F Batejat, MJ Bentum, G Bernardi, P Best, A Bonafede, F Breitling, M Brüggen, HR Butcher, B Ciardi, F De Gasperin, JP De Reijer, S Duscha, RA Fallows, C Ferrari, W Frieswijk, MA Garrett, AW Gunst, G Heald, M Hoeft, E Juette, P Maat, JP McKean, MJ Norden, M Pandey-Pommier, R Pizzo, AG Polatidis, W Reich, H Röttgering, J Sluman, Y Tang, C Tasse, R Vermeulen, RJ Van Weeren, SJ Wijnholds, S Yatawatta

Abstract:

Some radio pulsars show clear "drifting subpulses", in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the subpulse period (P3) is constant on timescales of days, months and years, and between 14-5100 MHz. Despite this, the shapes of the driftbands change radically with frequency. Previous studies have concluded that, while the subpulses appear to move through the pulse window approximately linearly at low frequencies (<500 MHz), a discrete step of ~180 in subpulse phase is observed at higher frequencies (>820 MHz) near to the peak of the average pulse profile. We use LOFAR, GMRT, GBT, WSRT and Effelsberg 100-m data to explore the frequency-dependence of this phase step. We show that the size of the subpulse phase step increases gradually, and is observable even at low frequencies. We attribute the subpulse phase step to the presence of two separate driftbands, whose relative arrival times vary with frequency - one driftband arriving 30 pulses earlier at 20 MHz than it does at 1380 MHz, whilst the other arrives simultaneously at all frequencies. The drifting pattern which is observed here cannot be explained by either the rotating carousel model or the surface oscillation model, and could provide new insight into the physical processes happening within the pulsar magnetosphere. © ESO, 2013.

Inclination and relativistic effects in the outburst evolution of black hole transients

(2013)

Authors:

T Muñoz-Darias, M Coriat, DS Plant, G Ponti, RP Fender, RJH Dunn

Search for Bs0→μ+μ- and B0→μ+μ- decays with the full CDF Run II data set

Physical Review D - Particles, Fields, Gravitation and Cosmology 87:7 (2013)

Authors:

T Aaltonen, S Amerio, D Amidei, A Anastassov, A Annovi, J Antos, G Apollinari, JA Appel, T Arisawa, A Artikov, J Asaadi, W Ashmanskas, B Auerbach, A Aurisano, F Azfar, W Badgett, T Bae, A Barbaro-Galtieri, VE Barnes, BA Barnett, P Barria, P Bartos, M Bauce, F Bedeschi, S Behari, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, KR Bland, B Blumenfeld, A Bocci, A Bodek, D Bortoletto, J Boudreau, A Boveia, L Brigliadori, C Bromberg, E Brucken, J Budagov, HS Budd, K Burkett, G Busetto, P Bussey, P Butti, A Buzatu, A Calamba, S Camarda, M Campanelli, F Canelli, B Carls, D Carlsmith, R Carosi, S Carrillo, B Casal, M Casarsa, A Castro, P Catastini, D Cauz, V Cavaliere, M Cavalli-Sforza, A Cerri, L Cerrito, YC Chen, M Chertok, G Chiarelli, G Chlachidze, K Cho, D Chokheli, MA Ciocci, A Clark, C Clarke, ME Convery, J Conway, M Corbo, M Cordelli, CA Cox, DJ Cox, M Cremonesi, D Cruz, J Cuevas, R Culbertson, N D'Ascenzo, M Datta, P De Barbaro, L Demortier, M Deninno, F Devoto, M D'Errico, A Di Canto, B Di Ruzza, JR Dittmann, M D'Onofrio, S Donati, M Dorigo, A Driutti, K Ebina, R Edgar, A Elagin

Abstract:

We report on a search for Bs0→μ+μ- and B0→μ+μ- decays using proton-antiproton collision data at √s=1.96 TeV corresponding to 10 fb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B0 candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of B(B0→μ+μ-)<4.6×10-9 at 95% confidence level. We observe an excess of Bs0 candidates. The probability that the background processes alone could produce such an excess or larger is 0.94%. The probability that the combination of background and the expected standard model rate of Bs0→μ+μ- could produce such an excess or larger is 6.8%. These data are used to determine a branching fraction B(Bs0→μ+μ-)=(1.3-0.7+0.9) ×10-8 and provide an upper limit of B(Bs0→μ +μ-)<3.1×10-8 at 95% confidence level. © 2013 American Physical Society.

Semi-classical approach to sequential recombination algorithms for jet clustering

(2013)

Authors:

JC Tseng, H Evans

Search for WH production with a light Higgs boson decaying to prompt electron-jets in proton-proton collisions at √s=7 TeV with the ATLAS detector

New Journal of Physics 15 (2013)

Authors:

G Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, OS Abouzeid, H Abramowicz, H Abreu, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, TPA Åkesson, G Akimoto, AV Akimov, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, LJ Allison, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, F Alonso, A Altheimer, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, SP Amor Dos Santos, A Amorim, S Amoroso, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, S Angelidakis, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, M Aoki, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, S Argyropoulos, E Arik, M Arik

Abstract:

A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb-1 of data collected in 2011 with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at . One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 to 140 GeV. © CERN 2013 for the benefit of the ATLAS Collaboration, published under the terms of the Creative Commons Attribution 3.0 licence by IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.