Early science with the Karoo Array Telescope test array KAT-7
South African Journal of Science 109:7-8 (2013)
Erratum: search for new physics in events with same-sign dileptons and b jets in pp collisions at √s=8 TeV (Journal of High Energy Physics)
Journal of High Energy Physics 2013:7 (2013)
Evolution of faint radio sources in the VIDEO-XMM3 field
Monthly Notices of the Royal Astronomical Society 436:2 (2013) 1084-1095
Abstract:
It has been speculated that low-luminosity radio-loud active galactic nuclei (AGN) have the potential to serve as an important source of AGN feedback, and may be responsible for suppressing star formation activity in massive elliptical galaxies at late times. As such the cosmic evolution of these sources is vitally important to understand the significance of such AGN feedback processes and their influence on the global star formation history of the Universe. In this paper, we present a new investigation of the evolution of faint radio sources out to z ~ 2.5. We combine a 1 square degree Very Large Array radio survey, complete to a depth of 100 μJy, with accurate 10 band photometric redshifts from the following surveys: Visible and Infrared Survey Telescope for Astronomy Deep Extragalactic Observations and Canada-France-Hawaii Telescope Legacy Survey. The results indicate that the radio population experiences mild positive evolution out to z ~ 1.2 increasing their space density by a factor of ~3, consistent with results of several previous studies. Beyond z = 1.2, there is evidence of a slowing down of this evolution. Star-forming galaxies drive the more rapid evolution at low redshifts, z < 1.2, while more slowly evolving AGN populations dominate at higher redshifts resulting in a decline in the evolution of the radio luminosity function at z > 1.2. The evolution is best fitted by pure luminosity evolution with star-forming galaxies evolving as (1 + z)2.47 ± 0.12 and AGN as (1 + z)1.18 ± 0.21M. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Excited OH+, H2 O+, and H3 O + in NGC 4418 and Arp 220
Astronomy and Astrophysics 550 (2013)
Abstract:
We report on Herschel/PACS observations of absorption lines of OH +, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with Elower of at least 285 and ∼200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH +/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1) × 1016 cm-2 and ∼ 2 × 10-8, respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH +/H2O+ ∼ 5-10. H3O+ is detected in both sources with N(H3O+) ∼ (0.5-2) × 1016 cm-2, and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of ∼500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ → O+ → OH+ → H2O+ → H3O +, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (≥104 cm-3) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is ζ > 10-13 s-1, a lower limit that is several × 102 times the highest current rate estimates for Galactic regions. In Arp 220, our lower limit for ζ is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an active galactic nucleus is responsible for the molecular ion production. © 2013 ESO.Herschel*-ATLAS: Correlations between dust and gas in local submm-selected galaxies
Monthly Notices of the Royal Astronomical Society 436:1 (2013) 479-502