Future Science Prospects for AMI

(2012)

Authors:

Keith Grainge, Paul Alexander, Richard Battye, Mark Birkinshaw, Andrew Blain, Malcolm Bremer, Sarah Bridle, Michael Brown, Richard Davis, Clive Dickinson, Alastair Edge, George Efstathiou, Robert Fender, Martin Hardcastle, Jennifer Hatchell, Michael Hobson, Matthew Jarvis, Benjamin Maughan, Ian McHardy, Matthew Middleton, Anthony Lasenby, Richard Saunders, Giorgio Savini, Anna Scaife, Graham Smith, Mark Thompson, Glenn White, Kris Zarb-Adami, James Allison, Jane Buckle, Alberto Castro-Tirado, Maria Chernyakova, Roger Deane, Farhan Feroz, Ricardo Genova Santos, David Green, Diana Hannikainen, Ian Heywood, Natasha Hurley-Walker, Ruediger Kneissl, Karri Koljonen, Shrinivas Kulkarni, Sera Markoff, Carrie MacTavish, Michael McCollough, Simone Migliari, Jon M Miller, James Miller-Jones, Malak Olamaie, Zsolt Paragi, Timothy Pearson, Guy Pooley, Katja Pottschmidt, Rafael Rebolo, John Richer, Julia Riley, Jerome Rodriguez, Carmen Rodriguez-Gonzalvez, Anthony Rushton, Petri Savolainen, Paul Scott, Timothy Shimwell, Marco Tavani, John Tomsick, Valeriu Tudose, Kurt van der Heyden, Alexander van der Horst, Angelo Varlotta, Elizabeth Waldram, Joern Wilms, Andrzej Zdziarski, Jonathan Zwart, Yvette Perrott, Clare Rumsey, Michel Schammel

Future Science Prospects for AMI

ArXiv 1208.1966 (2012)

Authors:

Keith Grainge, Paul Alexander, Richard Battye, Mark Birkinshaw, Andrew Blain, Malcolm Bremer, Sarah Bridle, Michael Brown, Richard Davis, Clive Dickinson, Alastair Edge, George Efstathiou, Robert Fender, Martin Hardcastle, Jennifer Hatchell, Michael Hobson, Matthew Jarvis, Benjamin Maughan, Ian McHardy, Matthew Middleton, Anthony Lasenby, Richard Saunders, Giorgio Savini, Anna Scaife, Graham Smith, Mark Thompson, Glenn White, Kris Zarb-Adami, James Allison, Jane Buckle, Alberto Castro-Tirado, Maria Chernyakova, Roger Deane, Farhan Feroz, Ricardo Genova Santos, David Green, Diana Hannikainen, Ian Heywood, Natasha Hurley-Walker, Ruediger Kneissl, Karri Koljonen, Shrinivas Kulkarni, Sera Markoff, Carrie MacTavish, Michael McCollough, Simone Migliari, Jon M Miller, James Miller-Jones, Malak Olamaie, Zsolt Paragi, Timothy Pearson, Guy Pooley, Katja Pottschmidt, Rafael Rebolo, John Richer, Julia Riley, Jerome Rodriguez, Carmen Rodriguez-Gonzalvez, Anthony Rushton, Petri Savolainen, Paul Scott, Timothy Shimwell, Marco Tavani, John Tomsick, Valeriu Tudose, Kurt van der Heyden, Alexander van der Horst, Angelo Varlotta, Elizabeth Waldram, Joern Wilms, Andrzej Zdziarski, Jonathan Zwart, Yvette Perrott, Clare Rumsey, Michel Schammel

Abstract:

The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0.5-10 arcmin with very low systematics. The Small Array (AMI-SA; ten 3.7-m antennas) couples very well to Sunyaev-Zel'dovich features from galaxy clusters and to many Galactic features. The Large Array (AMI-LA; eight 13-m antennas) has a collecting area ten times that of the AMI-SA and longer baselines, crucially allowing the removal of the effects of confusing radio point sources from regions of low surface-brightness, extended emission. Moreover AMI provides fast, deep object surveying and allows monitoring of large numbers of objects. In this White Paper we review the new science - both Galactic and extragalactic - already achieved with AMI and outline the prospects for much more.

Search for charged Higgs bosons decaying via H± → τν in tt̄ events using pp collision data at √s = 7 TeV with the ATLAS detector

Journal of High Energy Physics 2012:6 (2012)

Authors:

G Aad, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, B Abi, M Abolins, OS AbouZeid, H Abramowicz, H Abreu, E Acerbi, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, A Akiyama, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwoo-Spiers, J Almond, A Aloisio, R Alon, A Alonso, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, A Amorim, G Amorós, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, XS Anduaga, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, S Aoun, LB Aperio, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, E Arik, M Arik, AJ Armbruster, O Arnaez, V Arnal, C Arnault, A Artamonov, G Artoni

Abstract:

The results of a search for charged Higgs bosons are presented. The analysis is based on 4.6 fb?1 of proton-proton collision data at √s = 7TeV collected by the ATLAS experiment at the Large Hadron Collider, using top quark pair events with a τ lepton in the final state. The data are consistent with the expected background from Standard Model processes. Assuming that the branching ratio of the charged Higgs boson to a τ lepton and a neutrino is 100%, this leads to upper limits on the branching ratio of top quark decays to a b quark and a charged Higgs boson between 5% and 1% for charged Higgs boson masses ranging from 90GeV to 160GeV, respectively. In the context of the mhmaxscenario of the MSSM, tan β above 12-26, as well as between 1 and 2-6, can be excluded for charged Higgs boson masses between 90GeV and 150GeV. Copyright CERN.

Stellar Mass Black Holes and Ultraluminous X-Ray Sources

(2012)

Authors:

Rob Fender, Tomaso Belloni

Stellar-mass black holes and ultraluminous x-ray sources.

Science 337:6094 (2012) 540-544

Authors:

Rob Fender, Tomaso Belloni

Abstract:

We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.